Sponsored by Deepsite.site

Databricks MCP Server

Created By
MCP-Mirror9 months ago
Mirror of
Content

Databricks MCP Server

A Model Completion Protocol (MCP) server for Databricks that provides access to Databricks functionality via the MCP protocol. This allows LLM-powered tools to interact with Databricks clusters, jobs, notebooks, and more.

Features

  • MCP Protocol Support: Implements the MCP protocol to allow LLMs to interact with Databricks
  • Databricks API Integration: Provides access to Databricks REST API functionality
  • Tool Registration: Exposes Databricks functionality as MCP tools
  • Async Support: Built with asyncio for efficient operation

Available Tools

The Databricks MCP Server exposes the following tools:

  • list_clusters: List all Databricks clusters
  • create_cluster: Create a new Databricks cluster
  • terminate_cluster: Terminate a Databricks cluster
  • get_cluster: Get information about a specific Databricks cluster
  • start_cluster: Start a terminated Databricks cluster
  • list_jobs: List all Databricks jobs
  • run_job: Run a Databricks job
  • list_notebooks: List notebooks in a workspace directory
  • export_notebook: Export a notebook from the workspace
  • list_files: List files and directories in a DBFS path
  • execute_sql: Execute a SQL statement

Installation

Prerequisites

  • Python 3.10 or higher
  • uv package manager (recommended for MCP servers)

Setup

  1. Install uv if you don't have it already:

    # MacOS/Linux
    curl -LsSf https://astral.sh/uv/install.sh | sh
    
    # Windows (in PowerShell)
    irm https://astral.sh/uv/install.ps1 | iex
    

    Restart your terminal after installation.

  2. Clone the repository:

    git clone https://github.com/JustTryAI/databricks-mcp-server.git
    cd databricks-mcp-server
    
  3. Set up the project with uv:

    # Create and activate virtual environment
    uv venv
    
    # On Windows
    .\.venv\Scripts\activate
    
    # On Linux/Mac
    source .venv/bin/activate
    
    # Install dependencies in development mode
    uv pip install -e .
    
    # Install development dependencies
    uv pip install -e ".[dev]"
    
  4. Set up environment variables:

    # Windows
    set DATABRICKS_HOST=https://your-databricks-instance.azuredatabricks.net
    set DATABRICKS_TOKEN=your-personal-access-token
    
    # Linux/Mac
    export DATABRICKS_HOST=https://your-databricks-instance.azuredatabricks.net
    export DATABRICKS_TOKEN=your-personal-access-token
    

    You can also create an .env file based on the .env.example template.

Running the MCP Server

To start the MCP server, run:

# Windows
.\start_mcp_server.ps1

# Linux/Mac
./start_mcp_server.sh

These wrapper scripts will execute the actual server scripts located in the scripts directory. The server will start and be ready to accept MCP protocol connections.

You can also directly run the server scripts from the scripts directory:

# Windows
.\scripts\start_mcp_server.ps1

# Linux/Mac
./scripts/start_mcp_server.sh

Querying Databricks Resources

The repository includes utility scripts to quickly view Databricks resources:

# View all clusters
uv run scripts/show_clusters.py

# View all notebooks
uv run scripts/show_notebooks.py

Project Structure

databricks-mcp-server/
├── src/                             # Source code
│   ├── __init__.py                  # Makes src a package
│   ├── __main__.py                  # Main entry point for the package
│   ├── main.py                      # Entry point for the MCP server
│   ├── api/                         # Databricks API clients
│   ├── core/                        # Core functionality
│   ├── server/                      # Server implementation
│   │   ├── databricks_mcp_server.py # Main MCP server
│   │   └── app.py                   # FastAPI app for tests
│   └── cli/                         # Command-line interface
├── tests/                           # Test directory
├── scripts/                         # Helper scripts
│   ├── start_mcp_server.ps1         # Server startup script (Windows)
│   ├── run_tests.ps1                # Test runner script
│   ├── show_clusters.py             # Script to show clusters
│   └── show_notebooks.py            # Script to show notebooks
├── examples/                        # Example usage
├── docs/                            # Documentation
└── pyproject.toml                   # Project configuration

See project_structure.md for a more detailed view of the project structure.

Development

Code Standards

  • Python code follows PEP 8 style guide with a maximum line length of 100 characters
  • Use 4 spaces for indentation (no tabs)
  • Use double quotes for strings
  • All classes, methods, and functions should have Google-style docstrings
  • Type hints are required for all code except tests

Linting

The project uses the following linting tools:

# Run all linters
uv run pylint src/ tests/
uv run flake8 src/ tests/
uv run mypy src/

Testing

The project uses pytest for testing. To run the tests:

# Run all tests with our convenient script
.\scripts\run_tests.ps1

# Run with coverage report
.\scripts\run_tests.ps1 -Coverage

# Run specific tests with verbose output
.\scripts\run_tests.ps1 -Verbose -Coverage tests/test_clusters.py

You can also run the tests directly with pytest:

# Run all tests
uv run pytest tests/

# Run with coverage report
uv run pytest --cov=src tests/ --cov-report=term-missing

A minimum code coverage of 80% is the goal for the project.

Documentation

  • API documentation is generated using Sphinx and can be found in the docs/api directory
  • All code includes Google-style docstrings
  • See the examples/ directory for usage examples

Examples

Check the examples/ directory for usage examples. To run examples:

# Run example scripts with uv
uv run examples/direct_usage.py
uv run examples/mcp_client_usage.py

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

  1. Ensure your code follows the project's coding standards
  2. Add tests for any new functionality
  3. Update documentation as necessary
  4. Verify all tests pass before submitting

License

This project is licensed under the MIT License - see the LICENSE file for details.

Recommend Servers
TraeBuild with Free GPT-4.1 & Claude 3.7. Fully MCP-Ready.
Visual Studio Code - Open Source ("Code - OSS")Visual Studio Code
Jina AI MCP ToolsA Model Context Protocol (MCP) server that integrates with Jina AI Search Foundation APIs.
BlenderBlenderMCP connects Blender to Claude AI through the Model Context Protocol (MCP), allowing Claude to directly interact with and control Blender. This integration enables prompt assisted 3D modeling, scene creation, and manipulation.
Zhipu Web SearchZhipu Web Search MCP Server is a search engine specifically designed for large models. It integrates four search engines, allowing users to flexibly compare and switch between them. Building upon the web crawling and ranking capabilities of traditional search engines, it enhances intent recognition capabilities, returning results more suitable for large model processing (such as webpage titles, URLs, summaries, site names, site icons, etc.). This helps AI applications achieve "dynamic knowledge acquisition" and "precise scenario adaptation" capabilities.
Baidu Map百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
MiniMax MCPOfficial MiniMax Model Context Protocol (MCP) server that enables interaction with powerful Text to Speech, image generation and video generation APIs.
Playwright McpPlaywright MCP server
AiimagemultistyleA Model Context Protocol (MCP) server for image generation and manipulation using fal.ai's Stable Diffusion model.
CursorThe AI Code Editor
DeepChatYour AI Partner on Desktop
MCP AdvisorMCP Advisor & Installation - Use the right MCP server for your needs
Amap Maps高德地图官方 MCP Server
Serper MCP ServerA Serper MCP Server
WindsurfThe new purpose-built IDE to harness magic
ChatWiseThe second fastest AI chatbot™
Tavily Mcp
Context7Context7 MCP Server -- Up-to-date code documentation for LLMs and AI code editors
TimeA Model Context Protocol server that provides time and timezone conversion capabilities. This server enables LLMs to get current time information and perform timezone conversions using IANA timezone names, with automatic system timezone detection.
EdgeOne Pages MCPAn MCP service designed for deploying HTML content to EdgeOne Pages and obtaining an accessible public URL.
Howtocook Mcp基于Anduin2017 / HowToCook (程序员在家做饭指南)的mcp server,帮你推荐菜谱、规划膳食,解决“今天吃什么“的世纪难题; Based on Anduin2017/HowToCook (Programmer's Guide to Cooking at Home), MCP Server helps you recommend recipes, plan meals, and solve the century old problem of "what to eat today"