Sponsored by Deepsite.site

LOTUS-MCP

Created By
blue-lotus-org9 months ago
Integration two AI's into a modernized MCP for better performance
Content
Public | Free OpenSource

LOTUS-MCP

FOSS solution

The LOTUS-MCP protocol outlined here is an impressive approach to model coordination and processing, integrating Mistral and Gemini with a structured architecture that allows for:

  • Routing & fallback strategies between models.
  • Consensus engine to compare outputs.
  • Context-aware processing, improving coherence across interactions.
  • Tool integration, making it extensible for external APIs.
  • Rate limiting & security for production stability.

The Model Context Protocol (MCP) developed by Anthropic for Claude is a groundbreaking open standard that enables AI assistants to connect with external data sources and tools.
As a developer or business maybe you like to have your own protocol. This guide made for you.

First looking into MCP exist by claude:

+-------------+     +-------------+     +-------------+
|             |     |             |     |             |
|    User     |     |     AI      |     |   External  |
|  Interface  |<--->|   Model     |<--->|    Tools    |
|             |     |(e.g. Claude)|     |  & Data     |
|             |     |             |     |             |
+-------------+     +-------------+     +-------------+
       ^                   ^                   ^
       |                   |                   |
       |                   |                   |
       v                   v                   v
+--------------------------------------------------+
|                                                  |
|           Model Context Protocol                 |
|                   (MCP)                          |
|                                                  |
+--------------------------------------------------+
       ^                   ^                   ^
       |                   |                   |
       |                   |                   |
       v                   v                   v
+-------------+     +-------------+     +-------------+
|             |     |             |     |             |
| Development |     |  Business   |     |   Content   |
| Environment |     |    Tools    |     | Repositories|
|             |     |             |     |             |
+-------------+     +-------------+     +-------------+

Statement

Then implement a new modernized structure for MCP. So first thing first is the cost:

| Metric          | Mistral Target | Gemini Target |
|-----------------|----------------|---------------|
| Latency         | <800ms         | <1200ms       |
| Accuracy        | 95%            | 92%           |
| Cost/1k tokens  | $0.15          | $0.25         |

So to build it we need an architecture design, something like this:

┌─────────────┐     ┌─────────────┐     ┌─────────────┐
│             │     │  Decision   │     │             │
│   User      ├────►│  Router     ├────►│  Mistral    │
│  Interface  │     │ (Task Type  │     │   (Code/    │
│             │◄────┤  Analysis)  │◄────┤   Text)     │
└─────────────┘     └─────────────┘     └─────────────┘
                        ▲   │               ▲   │
                        │   └───────┐       │   └────┐
                        ▼           ▼       ▼        ▼
                    ┌─────────┐ ┌─────────┐ ┌─────────┐
                    │ Gemini  │ │Fallback │ │Error    │
                    │(Multi-  │ │Model    │ │Handling │
                    │ modal)  │ │         │ │System   │
                    └─────────┘ └─────────┘ └─────────┘

This is User Input → Mistral (code/text processing) → Gemini (multimodal enhancement) → Final Output at the final of our journey we can to build. So go to start:

Beginning our journey

Now step-by-step guide to building a unified Model Context Protocol (MCP) system for integrating Mistral and Gemini in one application:


OUR MCP Architecture Design

┌──────────────┐       ┌───────────────┐       ┌──────────────┐
│              │       │               │       │              │
│  External    │       │   Unified     │       │   External   │
│   Tools      │◄─────►│  MCP Server   │◄─────►│   Data       │
│ (APIs, DBs)  │       │ (Orchestrator)│       │  Sources     │
└──────▲───────┘       └──────┬───┬────┘       └──────▲───────┘
       │                      │   │                   │
       │                      ▼   ▼                   │
┌──────┴───────┐       ┌───────────────┐       ┌──────┴───────┐
│              │       │               │       │              │
│   Mistral    │       │  MCP Client   │       │   Gemini     │
│  Interface   │◄─────►│(Adapter Layer)│◄─────►│ Interface    │
│              │       │               │       │              │
└──────────────┘       └───────────────┘       └──────────────┘

1. Protocol Specification

Define your MCP standard with these core components:

  • Message Format (JSON Schema):
    {
      "request_id": "uuid",
      "model": "mistral|gemini|both",
      "content": {"text": "", "files": []},
      "context": {"session": {}, "tools": []},
      "routing_rules": {"fallback": "auto", "priority": 0-100}
    }
    
  • API Endpoints:
    • /mcp/process - Main processing endpoint
    • /mcp/feedback - Response refinement loop
    • /mcp/context - Session management

2. Adapter Layer Implementation

Create model-specific adapters that translate MCP protocol to each AI's API:

Mistral Adapter:

class MistralMCPAdapter:
    def process(self, mcp_request):
        # Convert MCP format to Mistral's API format
        mistral_prompt = f"CONTEXT: {mcp_request['context']}\nQUERY: {mcp_request['content']}"
        response = mistral.generate(mistral_prompt)
        return self._to_mcp_format(response)

    def _to_mcp_format(self, raw_response):
        return {
            "model": "mistral",
            "content": raw_response.text,
            "metadata": {
                "tokens_used": raw_response.usage,
                "confidence": raw_response.scores
            }
        }

Gemini Adapter:

class GeminiMCPAdapter:
    def process(self, mcp_request):
        # Handle multimodal inputs
        if mcp_request['content']['files']:
            response = gemini.generate_content(
                [mcp_request['content']['text'], *mcp_request['content']['files']]
            )
        else:
            response = gemini.generate_text(mcp_request['content']['text'])
            
        return {
            "model": "gemini",
            "content": response.text,
            "metadata": {
                "safety_ratings": response.safety_ratings,
                "citation_metadata": response.citation_metadata
            }
        }

3. Unified Processing Workflow

def unified_processing(mcp_request):
    # Route based on model selection
    if mcp_request['model'] == 'both':
        mistral_result = MistralAdapter.process(mcp_request)
        gemini_result = GeminiAdapter.process(mcp_request)
        return consensus_engine(mistral_result, gemini_result)
    
    elif mcp_request['model'] == 'mistral':
        return MistralAdapter.process(mcp_request)
    
    elif mcp_request['model'] == 'gemini':
        return GeminiAdapter.process(mcp_request)
    
    else:
        raise MCPError("Invalid model selection")

4. Context Management System

Implement shared context handling:

class MCPContextManager:
    def __init__(self):
        self.session_context = {}
        self.tool_context = {
            'database': SQLConnector(),
            'apis': [SlackAPI(), GoogleWorkspace()],
            'filesystem': S3Storage()
        }

    def update_context(self, session_id, new_context):
        # Maintain 3-level context stack
        self.session_context[session_id] = {
            'immediate': new_context,
            'historical': self._rollup_context(session_id),
            'persistent': self._load_persistent_context(session_id)
        }

5. Tool Integration Layer

Create reusable connectors following MCP standard:

class MCPToolConnector:
    def __init__(self, tool_type):
        self.tool = self._initialize_tool(tool_type)
        
    def execute(self, action, params):
        try:
            result = self.tool.execute(action, params)
            return self._format_mcp_response(result)
        except ToolError as e:
            return self._format_error(e)

    def _format_mcp_response(self, result):
        return {
            "tool_response": result.data,
            "metadata": {
                "execution_time": result.timing,
                "confidence": result.accuracy_score
            }
        }

6. Security Implementation

Authentication Flow:

1. Client Request ──► MCP Gateway ──► JWT Validation
2. Token Validation ──► Model Access Control List
3. Request Logging ──► Encrypted Audit Trail
4. Response Sanitization ──► Content Filtering

Rate Limiting Setup:

# Use token bucket algorithm for both models
mcp_rate_limiter = RateLimiter(
    limits={
        'mistral': TokenBucket(rate=100/60),  # 100 requests/minute
        'gemini': TokenBucket(rate=50/60),
        'combined': TokenBucket(rate=75/60)
    }
)

7. Deployment Strategy

Recommended Stack:

services:
  mcp_gateway:
    image: nginx-plus
    config:
      rate_limiting: enabled
      
  core_service:
    image: python:3.11
    components:
      - model_adapter_layer
      - context_manager
      - tool_connectors
      
  monitoring:
    stack: prometheus + grafana
    metrics:
      - model_performance
      - context_hit_rate
      - tool_usage

8. Testing Framework

Implement 3-level verification:

  1. Unit Tests: Individual adapters and connectors
  2. Integration Tests: Full MCP request flows
  3. Chaos Tests: Model failure simulations

Example test case:

def test_cross_model_processing():
    request = {
        "model": "both",
        "content": "Explain quantum computing in simple terms",
        "context": {"user_level": "expert"}
    }
    
    response = unified_processing(request)
    
    assert 'mistral' in response['sources']
    assert 'gemini' in response['sources']
    assert validate_consensus(response['content'])

Key Advantages of This Approach

  1. Unified Interface: Single protocol for both models
  2. Context Sharing: Maintains session state across different AI systems
  3. Tool Reusability: Common connectors work with both Mistral and Gemini
  4. Cost Optimization: Smart routing based on model capabilities
  5. Failover Support: Automatic fallback between models

Start with implementing the adapter layer first, then build out the context management system before adding tool integrations. Use gradual rollout with shadow mode (run both models but only show one output) to compare performance before full deployment.

💐 Congratulations, you own your own MCP-like framework! 🍷


Disclaimer: The codes may not ultimately produce real results, this is just a workaround. Understand the path architecture and build the foundation for this movement in the world of AI.

Licenses: MIT , Apache 2 — So feel free to use & edit & distribution.

credit: Blue Lotus

Recommend Servers
TraeBuild with Free GPT-4.1 & Claude 3.7. Fully MCP-Ready.
CursorThe AI Code Editor
Playwright McpPlaywright MCP server
Tavily Mcp
MiniMax MCPOfficial MiniMax Model Context Protocol (MCP) server that enables interaction with powerful Text to Speech, image generation and video generation APIs.
Zhipu Web SearchZhipu Web Search MCP Server is a search engine specifically designed for large models. It integrates four search engines, allowing users to flexibly compare and switch between them. Building upon the web crawling and ranking capabilities of traditional search engines, it enhances intent recognition capabilities, returning results more suitable for large model processing (such as webpage titles, URLs, summaries, site names, site icons, etc.). This helps AI applications achieve "dynamic knowledge acquisition" and "precise scenario adaptation" capabilities.
TimeA Model Context Protocol server that provides time and timezone conversion capabilities. This server enables LLMs to get current time information and perform timezone conversions using IANA timezone names, with automatic system timezone detection.
WindsurfThe new purpose-built IDE to harness magic
BlenderBlenderMCP connects Blender to Claude AI through the Model Context Protocol (MCP), allowing Claude to directly interact with and control Blender. This integration enables prompt assisted 3D modeling, scene creation, and manipulation.
Baidu Map百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Serper MCP ServerA Serper MCP Server
Amap Maps高德地图官方 MCP Server
DeepChatYour AI Partner on Desktop
Context7Context7 MCP Server -- Up-to-date code documentation for LLMs and AI code editors
AiimagemultistyleA Model Context Protocol (MCP) server for image generation and manipulation using fal.ai's Stable Diffusion model.
ChatWiseThe second fastest AI chatbot™
Visual Studio Code - Open Source ("Code - OSS")Visual Studio Code
EdgeOne Pages MCPAn MCP service designed for deploying HTML content to EdgeOne Pages and obtaining an accessible public URL.
Jina AI MCP ToolsA Model Context Protocol (MCP) server that integrates with Jina AI Search Foundation APIs.
MCP AdvisorMCP Advisor & Installation - Use the right MCP server for your needs
Howtocook Mcp基于Anduin2017 / HowToCook (程序员在家做饭指南)的mcp server,帮你推荐菜谱、规划膳食,解决“今天吃什么“的世纪难题; Based on Anduin2017/HowToCook (Programmer's Guide to Cooking at Home), MCP Server helps you recommend recipes, plan meals, and solve the century old problem of "what to eat today"