Sponsored by Deepsite.site

YouTube to LinkedIn MCP Server

Created By
MCP-Mirror8 months ago
Mirror of
Content

YouTube to LinkedIn MCP Server

A Model Context Protocol (MCP) server that automates generating LinkedIn post drafts from YouTube videos. This server provides high-quality, editable content drafts based on YouTube video transcripts.

Features

  • YouTube Transcript Extraction: Extract transcripts from YouTube videos using video URLs
  • Transcript Summarization: Generate concise summaries of video content using OpenAI GPT
  • LinkedIn Post Generation: Create professional LinkedIn post drafts with customizable tone and style
  • Modular API Design: Clean FastAPI implementation with well-defined endpoints
  • Containerized Deployment: Ready for deployment on Smithery

Setup Instructions

Prerequisites

  • Python 3.8+
  • Docker (for containerized deployment)
  • OpenAI API Key
  • YouTube Data API Key (optional, but recommended for better metadata)

Local Development

  1. Clone the repository:

    git clone <repository-url>
    cd yt-to-linkedin
    
  2. Create a virtual environment and install dependencies:

    python -m venv venv
    source venv/bin/activate  # On Windows: venv\Scripts\activate
    pip install -r requirements.txt
    
  3. Create a .env file in the project root with your API keys:

    OPENAI_API_KEY=your_openai_api_key
    YOUTUBE_API_KEY=your_youtube_api_key
    
  4. Run the application:

    uvicorn app.main:app --reload
    
  5. Access the API documentation at http://localhost:8000/docs

Docker Deployment

  1. Build the Docker image:

    docker build -t yt-to-linkedin-mcp .
    
  2. Run the container:

    docker run -p 8000:8000 --env-file .env yt-to-linkedin-mcp
    

Smithery Deployment

  1. Ensure you have the Smithery CLI installed and configured.

  2. Deploy to Smithery:

    smithery deploy
    

API Endpoints

1. Transcript Extraction

Endpoint: /api/v1/transcript
Method: POST
Description: Extract transcript from a YouTube video

Request Body:

{
  "youtube_url": "https://www.youtube.com/watch?v=VIDEO_ID",
  "language": "en",
  "youtube_api_key": "your_youtube_api_key"  // Optional, provide your own YouTube API key
}

Response:

{
  "video_id": "VIDEO_ID",
  "video_title": "Video Title",
  "transcript": "Full transcript text...",
  "language": "en",
  "duration_seconds": 600,
  "channel_name": "Channel Name",
  "error": null
}

2. Transcript Summarization

Endpoint: /api/v1/summarize
Method: POST
Description: Generate a summary from a video transcript

Request Body:

{
  "transcript": "Video transcript text...",
  "video_title": "Video Title",
  "tone": "professional",
  "audience": "general",
  "max_length": 250,
  "min_length": 150,
  "openai_api_key": "your_openai_api_key"  // Optional, provide your own OpenAI API key
}

Response:

{
  "summary": "Generated summary text...",
  "word_count": 200,
  "key_points": [
    "Key point 1",
    "Key point 2",
    "Key point 3"
  ]
}

3. LinkedIn Post Generation

Endpoint: /api/v1/generate-post
Method: POST
Description: Generate a LinkedIn post from a video summary

Request Body:

{
  "summary": "Video summary text...",
  "video_title": "Video Title",
  "video_url": "https://www.youtube.com/watch?v=VIDEO_ID",
  "speaker_name": "Speaker Name",
  "hashtags": ["ai", "machinelearning"],
  "tone": "professional",
  "voice": "first_person",
  "audience": "technical",
  "include_call_to_action": true,
  "max_length": 1200,
  "openai_api_key": "your_openai_api_key"  // Optional, provide your own OpenAI API key
}

Response:

{
  "post_content": "Generated LinkedIn post content...",
  "character_count": 800,
  "estimated_read_time": "About 1 minute",
  "hashtags_used": ["#ai", "#machinelearning"]
}

4. Output Formatting

Endpoint: /api/v1/output
Method: POST
Description: Format the LinkedIn post for output

Request Body:

{
  "post_content": "LinkedIn post content...",
  "format": "json"
}

Response:

{
  "content": {
    "post_content": "LinkedIn post content...",
    "character_count": 800
  },
  "format": "json"
}

Environment Variables

VariableDescriptionRequired
OPENAI_API_KEYOpenAI API key for summarization and post generationNo (can be provided in requests)
YOUTUBE_API_KEYYouTube Data API key for fetching video metadataNo (can be provided in requests)
PORTPort to run the server on (default: 8000)No

Note: While environment variables for API keys are optional (as they can be provided in each request), it's recommended to set them for local development and testing. When deploying to Smithery, users will need to provide their own API keys in the requests.

License

MIT

Recommend Servers
TraeBuild with Free GPT-4.1 & Claude 3.7. Fully MCP-Ready.
MiniMax MCPOfficial MiniMax Model Context Protocol (MCP) server that enables interaction with powerful Text to Speech, image generation and video generation APIs.
Howtocook Mcp基于Anduin2017 / HowToCook (程序员在家做饭指南)的mcp server,帮你推荐菜谱、规划膳食,解决“今天吃什么“的世纪难题; Based on Anduin2017/HowToCook (Programmer's Guide to Cooking at Home), MCP Server helps you recommend recipes, plan meals, and solve the century old problem of "what to eat today"
CursorThe AI Code Editor
DeepChatYour AI Partner on Desktop
MCP AdvisorMCP Advisor & Installation - Use the right MCP server for your needs
Tavily Mcp
EdgeOne Pages MCPAn MCP service designed for deploying HTML content to EdgeOne Pages and obtaining an accessible public URL.
Amap Maps高德地图官方 MCP Server
WindsurfThe new purpose-built IDE to harness magic
Baidu Map百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
AiimagemultistyleA Model Context Protocol (MCP) server for image generation and manipulation using fal.ai's Stable Diffusion model.
Visual Studio Code - Open Source ("Code - OSS")Visual Studio Code
TimeA Model Context Protocol server that provides time and timezone conversion capabilities. This server enables LLMs to get current time information and perform timezone conversions using IANA timezone names, with automatic system timezone detection.
ChatWiseThe second fastest AI chatbot™
Context7Context7 MCP Server -- Up-to-date code documentation for LLMs and AI code editors
Zhipu Web SearchZhipu Web Search MCP Server is a search engine specifically designed for large models. It integrates four search engines, allowing users to flexibly compare and switch between them. Building upon the web crawling and ranking capabilities of traditional search engines, it enhances intent recognition capabilities, returning results more suitable for large model processing (such as webpage titles, URLs, summaries, site names, site icons, etc.). This helps AI applications achieve "dynamic knowledge acquisition" and "precise scenario adaptation" capabilities.
Playwright McpPlaywright MCP server
Jina AI MCP ToolsA Model Context Protocol (MCP) server that integrates with Jina AI Search Foundation APIs.
BlenderBlenderMCP connects Blender to Claude AI through the Model Context Protocol (MCP), allowing Claude to directly interact with and control Blender. This integration enables prompt assisted 3D modeling, scene creation, and manipulation.
Serper MCP ServerA Serper MCP Server