Sponsored by Deepsite.site

Tribal - Knowledge Service

Created By
MCP-Mirror10 months ago
Mirror of
Content

Tribal - Knowledge Service

Tribal is an MCP (Model Context Protocol) server implementation for error knowledge tracking and retrieval. It provides both REST API and native MCP interfaces for integration with tools like Claude Code and Cline.

Features

  • Store and retrieve error records with full context
  • Vector similarity search using ChromaDB
  • REST API (FastAPI) and native MCP interfaces
  • JWT authentication with API keys
  • Local storage (ChromaDB) and AWS integration
  • Docker-compose deployment
  • CLI client integration

Overview

Tribal helps Claude remember and learn from programming errors. When you start a Claude Code session, Tribal is automatically available through MCP without additional imports.

Claude will:

  1. Store programming errors and solutions
  2. Search for similar errors when you encounter problems
  3. Build a knowledge base specific to your coding patterns

Packaging and Installing Tribal with uv

Prerequisites

  • Python 3.12+
  • uv package manager (recommended)

Build and Install Steps

Option 1: Direct installation with uv

The simplest approach is to install directly from the current directory:

# From the project root directory
cd /path/to/tribal

# Install using uv
uv pip install .

Option 2: Development Installation

For development work where you want changes to be immediately reflected:

# From the project root directory
cd /path/to/tribal

# Install in development mode
uv pip install -e .

Option 3: Build the package first

If you want to build a distributable package:

# Make sure you're in the project root directory
cd /path/to/tribal

# Install the build package if needed
uv pip install build

# Build the package
python -m build

# This creates distribution files in the dist/ directory
# Now install the wheel file
uv pip install dist/tribal-0.1.0-py3-none-any.whl

Option 4: Using the uv tool install command

You can also use the tool installation approach:

# Install as a global tool
cd /path/to/tribal
uv tool install .

# Or install in development mode
uv tool install -e .

Verification

After installation, verify that the tool is properly installed:

# Check the installation
which tribal

# Check the version
tribal version

Integration with Claude

After installation, you can integrate with Claude:

# Add Tribal to Claude Code
claude mcp add tribal --launch "tribal"

# Verify the configuration
claude mcp list

# For Docker container
claude mcp add tribal http://localhost:5000

Usage

Available MCP Tools

Tribal provides these MCP tools:

  1. add_error - Create new error record (POST /errors)
  2. get_error - Retrieve error by UUID (GET /errors/{id})
  3. update_error - Modify existing error (PUT /errors/{id})
  4. delete_error - Remove error record (DELETE /errors/{id})
  5. search_errors - Find errors by criteria (GET /errors)
  6. find_similar - Semantic similarity search (GET /errors/similar)
  7. get_token - Obtain JWT token (POST /token)

Example Usage with Claude

When Claude encounters an error:

I'll track this error and look for similar problems in our knowledge base.

When Claude finds a solution:

I've found a solution! I'll store this in our knowledge base for next time.

Commands for Claude

You can ask Claude to:

  • "Look for similar errors in our Tribal knowledge base"
  • "Store this solution to our error database"
  • "Check if we've seen this error before"

Running the Server

Using the tribal command

# Run the server
tribal

# Get help
tribal help

# Show version
tribal version

# Run with options
tribal server --port 5000 --auto-port

Using Python modules

# Run the Tribal server
python -m mcp_server_tribal.mcp_app

# Run the FastAPI backend server
python -m mcp_server_tribal.app

Using legacy entry points

# Legacy MCP server
mcp-server

# Legacy FastAPI server
mcp-api

Command-line Options

# Development mode with auto-reload
mcp-api --reload
mcp-server --reload

# Custom port
mcp-api --port 8080
mcp-server --port 5000

# Auto port selection
mcp-api --auto-port
mcp-server --auto-port

The FastAPI server will be available at http://localhost:8000 with API documentation at /docs. The MCP server will be available at http://localhost:5000 for Claude and other MCP-compatible LLMs.

Environment Variables

FastAPI Server

  • PERSIST_DIRECTORY: ChromaDB storage path (default: "./chroma_db")
  • API_KEY: Authentication key (default: "dev-api-key")
  • SECRET_KEY: JWT signing key (default: "insecure-dev-key-change-in-production")
  • REQUIRE_AUTH: Authentication requirement (default: "false")
  • PORT: Server port (default: 8000)

MCP Server

  • MCP_API_URL: FastAPI server URL (default: "http://localhost:8000")
  • MCP_PORT: MCP server port (default: 5000)
  • MCP_HOST: Host to bind to (default: "0.0.0.0")
  • API_KEY: FastAPI access key (default: "dev-api-key")
  • AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_S3_BUCKET: For AWS integration

API Endpoints

  • POST /errors: Create new error record
  • GET /errors/{error_id}: Get error by ID
  • PUT /errors/{error_id}: Update error record
  • DELETE /errors/{error_id}: Delete error
  • GET /errors: Search errors by criteria
  • GET /errors/similar: Find similar errors
  • POST /token: Get authentication token

Using the Client

# Add a new error record
mcp-client --action add --error-type ImportError --language python --error-message "No module named 'requests'" --solution-description "Install requests" --solution-explanation "You need to install the requests package"

# Get an error by ID
mcp-client --action get --id <error-id>

# Search for errors
mcp-client --action search --error-type ImportError --language python

# Find similar errors
mcp-client --action similar --query "ModuleNotFoundError: No module named 'pandas'"

How It Works

  1. Tribal uses ChromaDB to store error records and solutions
  2. When Claude encounters an error, it sends the error details to Tribal
  3. Tribal vectorizes the error and searches for similar ones
  4. Claude gets back relevant solutions to suggest
  5. New solutions are stored for future reference

Development

Running Tests

pytest
pytest tests/path_to_test.py::test_name  # For specific tests

Linting and Type Checking

ruff check .
mypy .
black .

GitHub Workflow

This project uses GitHub Actions for continuous integration and deployment. The workflow automatically runs tests, linting, and type checking on push to main and pull requests.

Workflow Steps

  1. Test: Runs linting, type checking, and unit tests

    • Uses Python 3.12
    • Installs dependencies with uv
    • Runs ruff, black, mypy, and pytest
  2. Build and Publish: Builds and publishes the package to PyPI

    • Triggered only on push to main branch
    • Uses Python's build system
    • Publishes to PyPI using twine

Testing Locally

You can test the GitHub workflow locally using the provided script:

# Make the script executable
chmod +x scripts/test-workflow.sh

# Run the workflow locally
./scripts/test-workflow.sh

This script simulates the GitHub workflow steps on your local machine:

  • Checks Python version (3.12 recommended)
  • Installs dependencies using uv
  • Runs linting with ruff
  • Checks formatting with black
  • Runs type checking with mypy
  • Runs tests with pytest
  • Builds the package

Note: The script skips the publishing step for local testing.

Project Structure

tribal/
├── src/
│   ├── mcp_server_tribal/      # Core package
│   │   ├── api/                # FastAPI endpoints
│   │   ├── cli/                # Command-line interface
│   │   ├── models/             # Pydantic models
│   │   ├── services/           # Service layer
│   │   │   ├── aws/            # AWS integrations
│   │   │   └── chroma_storage.py # ChromaDB implementation
│   │   └── utils/              # Utility functions
│   └── examples/               # Example usage code
├── tests/                      # pytest test suite
├── docker-compose.yml          # Docker production setup
├── pyproject.toml              # Project configuration
├── VERSIONING.md               # Versioning strategy documentation
├── CHANGELOG.md                # Version history
├── .bumpversion.cfg            # Version bumping configuration
└── README.md                   # Project documentation

Versioning

Tribal follows Semantic Versioning. See VERSIONING.md for complete details about:

  • Version numbering (MAJOR.MINOR.PATCH)
  • Schema versioning for database compatibility
  • Branch naming conventions
  • Release and hotfix procedures

Check the version with:

# Display version information
tribal version

Managing Dependencies

# Add a dependency
uv pip add <package-name>

# Add a development dependency
uv pip add <package-name>

# Update dependencies
uv pip sync requirements.txt requirements-dev.txt

Deployment

Docker Deployment

# Build and start containers
docker-compose up -d --build

# View logs
docker-compose logs -f

# Stop containers
docker-compose down

# With custom environment variables
API_PORT=8080 MCP_PORT=5000 REQUIRE_AUTH=true API_KEY=your-secret-key docker-start

Claude for Desktop Integration

Option 1: Let Claude for Desktop Launch the Server

  1. Open ~/Library/Application Support/Claude/claude_desktop_config.json

  2. Add the MCP server configuration (assumes Tribal tool is already installed):

    {
      "mcpServers": [
        {
          "name": "tribal",
          "launchCommand": "tribal"
        }
      ]
    }
    
  3. Restart Claude for Desktop

Option 2: Connect to Running Docker Container

  1. Start the container:

    cd /path/to/tribal
    docker-start
    
  2. Configure Claude for Desktop:

    {
      "mcpServers": [
        {
          "name": "tribal",
          "url": "http://localhost:5000"
        }
      ]
    }
    

Claude Code CLI Integration

# For Docker container
claude mcp add tribal http://localhost:5000

# For directly launched server
claude mcp add tribal --launch "tribal"

# Test the connection
claude mcp list
claude mcp test tribal

Troubleshooting

  1. Verify Tribal installation: which tribal
  2. Check configuration: claude mcp list
  3. Test server status: tribal status
  4. Look for error messages in the Claude output
  5. Check the database directory exists and has proper permissions

Cloud Deployment

The project includes placeholder implementations for AWS services:

  • S3Storage: For storing error records in Amazon S3
  • DynamoDBStorage: For using DynamoDB as the database

License

MIT License

Recommend Servers
TraeBuild with Free GPT-4.1 & Claude 3.7. Fully MCP-Ready.
EdgeOne Pages MCPAn MCP service designed for deploying HTML content to EdgeOne Pages and obtaining an accessible public URL.
TimeA Model Context Protocol server that provides time and timezone conversion capabilities. This server enables LLMs to get current time information and perform timezone conversions using IANA timezone names, with automatic system timezone detection.
Playwright McpPlaywright MCP server
DeepChatYour AI Partner on Desktop
BlenderBlenderMCP connects Blender to Claude AI through the Model Context Protocol (MCP), allowing Claude to directly interact with and control Blender. This integration enables prompt assisted 3D modeling, scene creation, and manipulation.
Tavily Mcp
AiimagemultistyleA Model Context Protocol (MCP) server for image generation and manipulation using fal.ai's Stable Diffusion model.
Zhipu Web SearchZhipu Web Search MCP Server is a search engine specifically designed for large models. It integrates four search engines, allowing users to flexibly compare and switch between them. Building upon the web crawling and ranking capabilities of traditional search engines, it enhances intent recognition capabilities, returning results more suitable for large model processing (such as webpage titles, URLs, summaries, site names, site icons, etc.). This helps AI applications achieve "dynamic knowledge acquisition" and "precise scenario adaptation" capabilities.
MCP AdvisorMCP Advisor & Installation - Use the right MCP server for your needs
Baidu Map百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Howtocook Mcp基于Anduin2017 / HowToCook (程序员在家做饭指南)的mcp server,帮你推荐菜谱、规划膳食,解决“今天吃什么“的世纪难题; Based on Anduin2017/HowToCook (Programmer's Guide to Cooking at Home), MCP Server helps you recommend recipes, plan meals, and solve the century old problem of "what to eat today"
MiniMax MCPOfficial MiniMax Model Context Protocol (MCP) server that enables interaction with powerful Text to Speech, image generation and video generation APIs.
ChatWiseThe second fastest AI chatbot™
Amap Maps高德地图官方 MCP Server
Serper MCP ServerA Serper MCP Server
Visual Studio Code - Open Source ("Code - OSS")Visual Studio Code
Jina AI MCP ToolsA Model Context Protocol (MCP) server that integrates with Jina AI Search Foundation APIs.
CursorThe AI Code Editor
WindsurfThe new purpose-built IDE to harness magic
Y GuiA web-based graphical interface for AI chat interactions with support for multiple AI models and MCP (Model Context Protocol) servers.