- Agentops Mcp
Agentops Mcp
AgentOps MCP Server
The AgentOps MCP server provides access to observability and tracing data for debugging complex AI agent runs. This adds crucial context about where the AI agent succeeds or fails.
Usage
MCP Client Configuration
Add the following to your MCP configuration file:
{
"mcpServers": {
"agentops-mcp": {
"command": "npx",
"args": ["agentops-mcp"],
"env": {
"AGENTOPS_API_KEY": ""
}
}
}
}
Installation
Installing via Smithery
To install agentops-mcp for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @AgentOps-AI/agentops-mcp --client claude
Local Development
To build the MCP server locally:
# Clone and setup
git clone https://github.com/AgentOps-AI/agentops-mcp.git
cd mcp
npm install
# Build the project
npm run build
# Run the server
npm pack
Available Tools
auth
Authorize using an AgentOps project API key and return JWT token.
Parameters:
api_key(string): Your AgentOps project API key
Returns:
- Authorization headers object or error message
get_project
Get project information and configuration.
get_trace
Retrieve trace information by ID.
Parameters:
trace_id(string): The trace ID to retrieve
get_span
Get span information by ID.
Parameters:
span_id(string): The span ID to retrieve
get_trace_metrics
Get performance metrics for a specific trace.
Parameters:
trace_id(string): The trace ID
get_span_metrics
Get performance metrics for a specific span.
Parameters:
span_id(string): The span ID
get_complete_trace
Get comprehensive trace information including all spans and their metrics.
Parameters:
trace_id(string): The trace ID
Requirements
- Node.js >= 18.0.0
- AgentOps API key (passed as parameter to tools)
Server Config
{
"mcpServers": {
"agentops-mcp": {
"command": "npx",
"args": [
"agentops-mcp"
],
"env": {
"AGENTOPS_API_KEY": ""
}
}
}
}