Sponsored by Deepsite.site

CodeAlive

Created By
CodeAlive-AI7 months ago
Provides a bridge to CodeAlive's platform for semantic code search, repository exploration, and context-aware chat completions that leverage deep understanding of entire codebases including documentation and dependencies.
Content

CodeAlive MCP: Deep Context for your project (especially for large codebases)

CodeAlive Logo

This MCP (Model Context Protocol) server for the CodeAlive API enables AI clients like Claude Desktop, Cursor, Windserf, VS Code (GitHub Copilot), Cline, Roo-Code, and Refact to access CodeAlive's advanced semantic code search and codebase interaction features.

CodeAlive MCP enhances these agents by providing enriched context from your project's codebase, enabling more intelligent and efficient interactions.

What is CodeAlive?

CodeAlive is a platform that analyzes your entire codebase, including documentation and dependencies, to understand its structure, patterns, and logic. It creates a detailed internal map of your repositories or workspaces, enabling fast, reliable, and high-quality answers to questions about your solution for any IT professional.

Using this MCP server allows AI agents (like Claude, Copilot, etc.) to leverage CodeAlive's deep code understanding. This helps agents:

  • Find relevant code faster: Get precise code snippets related to your questions.
  • Understand the bigger picture: Gain context about the entire repository or workspace, not just isolated files.
  • Reduce costs and time: Improve agent efficiency by providing accurate context directly, reducing the need for extensive file searching or guesswork.

Table of Contents

Available Tools

The MCP server provides the following tools:

  1. chat_completions: Access the CodeAlive Chat API with codebase context. If your API key is assigned to exactly one datasource, specifying the datasource is optional.
  2. get_data_sources: List available repositories and workspaces indexed by CodeAlive.
  3. search_code: Search for code snippets across your datasources using CodeAlive's semantic search. If your API key is assigned to exactly one datasource, specifying the datasource is optional.

Getting Started

Prerequisites

  • Python 3.11
  • uv (recommended) or pip
  • A CodeAlive account and API Key

Getting an API Key

  1. Log in to your CodeAlive account at https://app.codealive.dev/.
  2. Navigate to the API Keys section (under Organization).
  3. Click on "+ Create API Key".
  4. Give your key a descriptive name (e.g., "My Local MCP Key") and select the appropriate scope (e.g., "All Data Sources" or select specific ones).
  5. Click "Create".
  6. Important: Copy the generated API key immediately and store it securely. You won't be able to see it again after closing the dialog.

Installation

# Clone the repository
git clone https://github.com/CodeAlive-AI/codealive-mcp.git
cd codealive-mcp

# Create a virtual environment and install dependencies
uv venv
source .venv/bin/activate  # On Windows use: .venv\\Scripts\\activate
uv pip install -e .

Installing with pip

# Clone the repository
git clone https://github.com/CodeAlive-AI/codealive-mcp.git
cd codealive-mcp

# Create a virtual environment and install dependencies
python -m venv .venv
source .venv/bin/activate  # On Windows use: .venv\\Scripts\\activate
pip install -e .

Installing via Smithery

To install CodeAlive for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @CodeAlive-AI/codealive-mcp --client claude

Configuration

Configure the server using environment variables or command-line arguments.

Environment Variables

The following environment variables are supported:

  • CODEALIVE_API_KEY: Your CodeAlive API key. (Required unless passed via --api-key)

Command Line Options

  • --api-key: Your CodeAlive API key. Overrides the CODEALIVE_API_KEY environment variable.
  • --transport: Transport type: "stdio" (default) or "sse".
  • --host: Host address for SSE transport (default: 0.0.0.0).
  • --port: Port for SSE transport (default: 8000).
  • --debug: Enable debug mode with verbose logging to standard output/error.

Integrating with AI Clients

Below are configuration examples for popular AI clients. Remember to replace placeholders like /path/to/your/codealive-mcp and YOUR_API_KEY_HERE with your actual values. Using environment variables (env block) is generally recommended over putting the API key directly in the configuration file.

Continue

  1. Configure the MCP server in your project's .continue/config.yaml or globally in ~/.continue/config.yaml:

    # ~/.continue/config.yaml or ./.continue/config.yaml
    mcpServers:
      - name: CodeAlive
        command: /path/to/your/codealive-mcp/.venv/bin/python # Or use 'uv' if preferred (see Cursor example)
        args:
          - /path/to/your/codealive-mcp/src/codealive_mcp_server.py
          - --debug # Optional: Enable debug logging
        env:
          CODEALIVE_API_KEY: YOUR_API_KEY_HERE
    
  2. Restart Continue or reload the configuration.

Claude Desktop

  1. Edit your Claude Desktop configuration file:

    • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
    • Windows: %APPDATA%\Claude\claude_desktop_config.json (usually C:\Users\YourUsername\AppData\Roaming\Claude\claude_desktop_config.json)
  2. Add the MCP server configuration:

    {
      "mcpServers": {
        "codealive": {
          "command": "/path/to/your/codealive-mcp/.venv/bin/python",
          "args": [
            "/path/to/your/codealive-mcp/src/codealive_mcp_server.py",
            "--debug" // Optional: Enable debug logging
          ],
          "env": {
            "CODEALIVE_API_KEY": "YOUR_API_KEY_HERE"
          }
        }
      }
    }
    

    (Ensure this merges correctly if the file already has content)

  3. Restart Claude Desktop completely.

Visual Studio Code with GitHub Copilot

  1. Open VS Code settings (JSON) using the Command Palette (Ctrl+Shift+P or Cmd+Shift+P) and selecting "Preferences: Open User Settings (JSON)".

  2. Add the MCP server configuration to your settings.json:

    {
      // ... other settings ...
      "mcp": {
        "servers": {
          "codealive": {
            "command": "uv",
            "args": [
              "--directory",
              "/path/to/your/codealive-mcp", // Path to the MCP server project root
              "run",
              "python",
              "src/codealive_mcp_server.py",
              "--debug" // Optional: Enable debug logging
            ],
            "env": {
              "CODEALIVE_API_KEY": "YOUR_API_KEY_HERE"
            }
          }
        }
      }
      // ... other settings ...
    }
    

    (Ensure this merges correctly with existing settings)

  3. Restart VS Code. Ensure the GitHub Copilot extension is configured to potentially use MCP servers if required by its version/settings.

Cursor

  1. Open Cursor settings (Cmd+, or Ctrl+,).

  2. Navigate to the "MCP" section in the left panel.

  3. Click "Add new global MCP server".

  4. Enter the following JSON configuration, updating paths and API key:

    {
      "mcpServers": {
        "codealive": {
          "command": "uv",
          "args": [
            "--directory",
            "/path/to/your/codealive-mcp", // Path to the MCP server project root
            "run",
            "python",
            "src/codealive_mcp_server.py",
            "--debug" // Optional: Enable debug logging
          ],
          "env": {
            "CODEALIVE_API_KEY": "YOUR_API_KEY_HERE"
          }
        }
      }
    }
    
  5. Save the configuration.

  6. Restart Cursor completely.

Using Python Directly

If you prefer not to use uv, you can invoke the server script directly using the Python interpreter from your virtual environment. Update the command and args in the client configurations accordingly.

Claude Desktop with Python

{
  "mcpServers": {
    "codealive": {
      "command": "/path/to/your/codealive-mcp/.venv/bin/python", // Full path to python in venv
      "args": [
        "/path/to/your/codealive-mcp/src/codealive_mcp_server.py",
        "--debug" // Optional
      ],
      "env": {
        "CODEALIVE_API_KEY": "YOUR_API_KEY_HERE"
      }
    }
  }
}

Cursor with Python

{
  "mcpServers": {
    "codealive": {
      "command": "/path/to/your/codealive-mcp/.venv/bin/python",
      "args": [
        "/path/to/your/codealive-mcp/src/codealive_mcp_server.py",
        "--debug" // Optional
      ],
      "env": {
        "CODEALIVE_API_KEY": "YOUR_API_KEY_HERE"
      }
    }
  }
}

Troubleshooting

If the MCP server isn't working correctly with your AI client, follow these steps:

  1. Enable Debug Logging: Add the --debug flag to the args in your client's MCP configuration. This will print verbose logs from the MCP server itself to its standard output/error stream. Where this stream goes depends on how the client manages the MCP process.
  2. Check MCP Server Output:
    • Try running the server command directly in your terminal (activate the virtual environment first):
      # Activate venv first!
      export CODEALIVE_API_KEY="YOUR_API_KEY_HERE"
      python src/codealive_mcp_server.py --debug --transport stdio
      
    • Look for any error messages, especially related to API key validation or connection issues.
  3. Check Client Logs: Consult the documentation or settings for your specific AI client to find its log files. Look for errors related to starting or communicating with the "codealive" MCP server.
    • Claude Desktop:
      • Check the main application logs.
      • Look for MCP-specific logs:
        • macOS: ~/Library/Logs/Claude/mcp.log and ~/Library/Logs/Claude/mcp-server-codealive.log
        • Windows: %LOCALAPPDATA%\Claude\Logs\mcp.log and %LOCALAPPDATA%\Claude\Logs\mcp-server-codealive.log (Path is typically C:\Users\YourUsername\AppData\Local\Claude\Logs)
    • Cursor:
      • Use the Command Palette (Cmd+Shift+P / Ctrl+Shift+P) -> Developer: Toggle Developer Tools -> Console tab (for browser-level errors).
      • Check the Output Panel: Go to View -> Output (or click Output in the bottom panel). In the dropdown menu on the right side of the Output panel, look for a channel named CodeAlive, MCP, or related to the server process. This often contains the direct stdout/stderr from the MCP server if --debug is enabled.
      • Use the Command Palette -> Developer: Open Logs Folder. Check files within, especially related to the main process or extension host.
      • Log folder locations:
        • macOS: ~/Library/Application Support/Cursor/logs/
        • Windows: %APPDATA%\Cursor\logs\ (Typically C:\Users\YourUsername\AppData\Roaming\Cursor\logs\)
    • VS Code (Continue / Copilot):
      • Use the Command Palette (Cmd+Shift+P / Ctrl+Shift+P) -> Developer: Toggle Developer Tools -> Console tab (for browser-level errors).
      • Check the Output Panel: Go to View -> Output (or click Output in the bottom panel). In the dropdown menu on the right side of the Output panel, look for a channel named CodeAlive, MCP, GitHub Copilot, or Continue. The MCP server logs (especially with --debug) might be routed here.
      • Use the Command Palette -> Developer: Show Logs... -> Select Extension Host from the dropdown. Look for errors related to Copilot or Continue extensions trying to communicate via MCP.
      • For Continue specific logs: Use Command Palette -> Continue: Focus on Continue Console View (requires enabling Continue: Enable Console in settings). See Continue Troubleshooting Docs.
  4. Verify Configuration: Double-check the command, args, and env paths and values in your client's MCP configuration file. Ensure JSON/YAML syntax is correct.
  5. API Key: Ensure your CODEALIVE_API_KEY is correct.

If problems persist, consider opening an issue on the CodeAlive MCP server repository (if available) with relevant logs and configuration details (masking your API key).

You can also contact our support team at support@codealive.dev for further assistance.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Server Config

{
  "mcpServers": {
    "codealive": {
      "command": "/path/to/your/codealive-mcp/.venv/bin/python",
      "args": [
        "/path/to/your/codealive-mcp/src/codealive_mcp_server.py",
        "--debug"
      ],
      "env": {
        "CODEALIVE_API_KEY": "YOUR_API_KEY_HERE"
      }
    }
  }
}
Recommend Servers
TraeBuild with Free GPT-4.1 & Claude 3.7. Fully MCP-Ready.
DeepChatYour AI Partner on Desktop
EdgeOne Pages MCPAn MCP service designed for deploying HTML content to EdgeOne Pages and obtaining an accessible public URL.
TimeA Model Context Protocol server that provides time and timezone conversion capabilities. This server enables LLMs to get current time information and perform timezone conversions using IANA timezone names, with automatic system timezone detection.
AiimagemultistyleA Model Context Protocol (MCP) server for image generation and manipulation using fal.ai's Stable Diffusion model.
MiniMax MCPOfficial MiniMax Model Context Protocol (MCP) server that enables interaction with powerful Text to Speech, image generation and video generation APIs.
Zhipu Web SearchZhipu Web Search MCP Server is a search engine specifically designed for large models. It integrates four search engines, allowing users to flexibly compare and switch between them. Building upon the web crawling and ranking capabilities of traditional search engines, it enhances intent recognition capabilities, returning results more suitable for large model processing (such as webpage titles, URLs, summaries, site names, site icons, etc.). This helps AI applications achieve "dynamic knowledge acquisition" and "precise scenario adaptation" capabilities.
Context7Context7 MCP Server -- Up-to-date code documentation for LLMs and AI code editors
BlenderBlenderMCP connects Blender to Claude AI through the Model Context Protocol (MCP), allowing Claude to directly interact with and control Blender. This integration enables prompt assisted 3D modeling, scene creation, and manipulation.
Amap Maps高德地图官方 MCP Server
WindsurfThe new purpose-built IDE to harness magic
Howtocook Mcp基于Anduin2017 / HowToCook (程序员在家做饭指南)的mcp server,帮你推荐菜谱、规划膳食,解决“今天吃什么“的世纪难题; Based on Anduin2017/HowToCook (Programmer's Guide to Cooking at Home), MCP Server helps you recommend recipes, plan meals, and solve the century old problem of "what to eat today"
CursorThe AI Code Editor
Jina AI MCP ToolsA Model Context Protocol (MCP) server that integrates with Jina AI Search Foundation APIs.
MCP AdvisorMCP Advisor & Installation - Use the right MCP server for your needs
Serper MCP ServerA Serper MCP Server
Playwright McpPlaywright MCP server
ChatWiseThe second fastest AI chatbot™
Visual Studio Code - Open Source ("Code - OSS")Visual Studio Code
Tavily Mcp
Baidu Map百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。