- Strava MCP Server
Strava MCP Server
Content
Strava MCP Server
A Model Context Protocol (MCP) server that provides access to the Strava API. This server enables language models to interact with Strava data, including activities, athlete information, and more.
Features
- 🏃♂️ Activity tracking and analysis
- 📊 Athlete statistics
- 🗺️ Route visualization
- 🏆 Achievement tracking
- 🤝 Social features (kudos, comments)
Prerequisites
- Python 3.12+
- Strava API credentials
- pip (Python package installer)
Installation
- Clone the repository:
git clone https://github.com/yourusername/strava_mcp.git
cd strava_mcp
- Create a virtual environment:
python -m venv venv
source venv/bin/activate # On Windows: .\venv\Scripts\activate
- Install dependencies:
pip install -r requirements.txt
Configuration
- Create a
config/.envfile with your Strava API credentials:
STRAVA_CLIENT_ID=your_client_id
STRAVA_CLIENT_SECRET=your_client_secret
STRAVA_REFRESH_TOKEN=your_refresh_token
- To obtain Strava API credentials:
- Go to https://www.strava.com/settings/api
- Create a new application
- Note down the Client ID and Client Secret
- Follow the OAuth 2.0 flow to get your refresh token
Usage
Using with Claude
Once connected, you can interact with your Strava data through Claude in various ways:
Activity Queries
- "Show me my recent activities"
- "Get details about my last run"
- "What was my longest ride this month?"
- "Show me activities where I set personal records"
- "Display the route map for my latest activity"
Performance Analysis
- "What's my average running pace this year?"
- "Compare my cycling performance between last month and this month"
- "Show me my heart rate zones from yesterday's workout"
- "What's my total elevation gain for all activities?"
- "Calculate my weekly mileage for running"
Social Interactions
- "Who gave kudos on my latest activity?"
- "Show me comments on my marathon run"
- "List all my club activities"
- "Find activities I did with friends"
Achievement Tracking
- "List all my segment achievements"
- "Show my personal records on local segments"
- "What achievements did I earn this week?"
- "Display my progress on yearly goals"
Data Available Through Claude
-
Activity Details:
- Distance, duration, pace
- Route maps and elevation profiles
- Heart rate, power, and cadence data
- Splits and lap information
- Weather conditions during activity
-
Athlete Statistics:
- Year-to-date and all-time totals
- Personal records and achievements
- Training load and fitness trends
- Equipment usage and maintenance
-
Social Data:
- Kudos and comments
- Club activities and leaderboards
- Friend activities and challenges
- Segment efforts and rankings
-
Route Information:
- Detailed maps with elevation data
- Segment analysis
- Popular routes and segments
- Route planning and analysis
As an MCP Server
Update your Claude Desktop configuration:
{
"mcpServers": {
"Strava": {
"command": "python",
"args": ["src/strava_server.py"],
"cwd": "/path/to/strava_mcp",
"env": {
"STRAVA_CLIENT_ID": "your_client_id",
"STRAVA_CLIENT_SECRET": "your_client_secret",
"STRAVA_REFRESH_TOKEN": "your_refresh_token"
}
}
}
}
As an HTTP Server
- Start the server:
./run_server.sh
- Access the API at
http://localhost:8000
Available endpoints:
- GET
/activities/recent- List recent activities - GET
/activities/{id}- Get activity details - GET
/activities/{id}/map- Get activity map visualization - GET
/athlete/stats- Get athlete statistics
Development
Project Structure
strava_mcp/
├── src/
│ ├── strava_server.py # MCP server implementation
│ ├── strava_http_server.py # HTTP API server
│ ├── map_utils.py # Map visualization utilities
│ └── templates.py # HTML templates
├── config/
│ └── .env # Environment variables (not in git)
├── requirements.txt # Python dependencies
└── run_server.sh # Server startup script
Contributing
- Fork the repository
- Create a feature branch
- Commit your changes
- Push to the branch
- Create a Pull Request
Security
- Never commit
.envfiles or API credentials - The
.gitignorefile is configured to prevent sensitive data from being committed - Use environment variables for all sensitive configuration
License
This project is licensed under the MIT License - see the LICENSE file for details.
Acknowledgments
- Strava API Documentation
- Model Context Protocol (MCP) Specification
- Contributors and maintainers
Recommend Servers
TraeBuild with Free GPT-4.1 & Claude 3.7. Fully MCP-Ready.
Baidu Map百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Visual Studio Code - Open Source ("Code - OSS")Visual Studio Code
EdgeOne Pages MCPAn MCP service designed for deploying HTML content to EdgeOne Pages and obtaining an accessible public URL.
WindsurfThe new purpose-built IDE to harness magic
DeepChatYour AI Partner on Desktop
ChatWiseThe second fastest AI chatbot™
Tavily Mcp
MiniMax MCPOfficial MiniMax Model Context Protocol (MCP) server that enables interaction with powerful Text to Speech, image generation and video generation APIs.
Amap Maps高德地图官方 MCP Server
BlenderBlenderMCP connects Blender to Claude AI through the Model Context Protocol (MCP), allowing Claude to directly interact with and control Blender. This integration enables prompt assisted 3D modeling, scene creation, and manipulation.
TimeA Model Context Protocol server that provides time and timezone conversion capabilities. This server enables LLMs to get current time information and perform timezone conversions using IANA timezone names, with automatic system timezone detection.
Jina AI MCP ToolsA Model Context Protocol (MCP) server that integrates with Jina AI Search Foundation APIs.
Serper MCP ServerA Serper MCP Server
Howtocook Mcp基于Anduin2017 / HowToCook (程序员在家做饭指南)的mcp server,帮你推荐菜谱、规划膳食,解决“今天吃什么“的世纪难题;
Based on Anduin2017/HowToCook (Programmer's Guide to Cooking at Home), MCP Server helps you recommend recipes, plan meals, and solve the century old problem of "what to eat today"
Playwright McpPlaywright MCP server
AiimagemultistyleA Model Context Protocol (MCP) server for image generation and manipulation using fal.ai's Stable Diffusion model.
Context7Context7 MCP Server -- Up-to-date code documentation for LLMs and AI code editors
CursorThe AI Code Editor
Zhipu Web SearchZhipu Web Search MCP Server is a search engine specifically designed for large models. It integrates four search engines, allowing users to flexibly compare and switch between them. Building upon the web crawling and ranking capabilities of traditional search engines, it enhances intent recognition capabilities, returning results more suitable for large model processing (such as webpage titles, URLs, summaries, site names, site icons, etc.). This helps AI applications achieve "dynamic knowledge acquisition" and "precise scenario adaptation" capabilities.
MCP AdvisorMCP Advisor & Installation - Use the right MCP server for your needs