Sponsored by Deepsite.site

DevDocs MCP Implementation

Created By
llmian-spacea year ago
An MCP server inspired by devocs.io
Content

DevDocs MCP Implementation

A Model Context Protocol (MCP) implementation for documentation management and integration.

Project Structure

src/
├── resources/
│   ├── templates/      # Resource template system
│   └── managers/       # Resource management
├── documentation/
│   ├── processors/     # Documentation processing
│   └── integrators/    # Integration handlers
├── tasks/
│   ├── issues/         # Issue tracking
│   └── reviews/        # Review management
└── tests/
    ├── property/       # Property-based tests
    └── integration/    # Integration tests

Core Components

Resource Template System

The resource template system provides URI-based access to documentation resources with:

  • Type-safe parameter handling through Pydantic
  • Flexible URI template matching
  • Comprehensive error handling
  • State management for resource lifecycle

Example usage:

from src.resources.templates.base import ResourceTemplate

# Create a template with parameter typing
template = ResourceTemplate(
    uri_template='docs://api/{version}/endpoint',
    parameter_types={'version': str}
)

# Extract and validate parameters
params = template.extract_parameters('docs://api/v1/endpoint')
template.validate_parameters(params)

Testing Strategy

The project uses property-based testing with Hypothesis to ensure:

  • URI template validation
  • Parameter extraction correctness
  • Error handling robustness
  • Type safety enforcement

Run tests:

pytest tests/property/test_templates.py

Implementation Progress

Completed

  • Basic project structure
  • Resource template system
  • Property-based testing infrastructure
  • URI validation and parameter extraction
  • Error handling foundation

In Progress

  • Documentation processor integration
  • Caching layer implementation
  • Task management system
  • Performance optimization

Planned

  • Search implementation
  • Branch mapping system
  • State tracking
  • Monitoring system

Development Guidelines

  1. Follow TDD approach:

    • Write property-based tests first
    • Implement minimal passing code
    • Refactor for clarity and efficiency
  2. Error Handling:

    • Use structured error types
    • Implement recovery strategies
    • Maintain system stability
  3. Documentation:

    • Keep README updated
    • Document new features
    • Include usage examples

Branch Management

The project uses a branch-based development approach for:

  • Feature tracking
  • Documentation integration
  • Task management
  • Progress monitoring

Contributing

  1. Create feature branch
  2. Add property tests
  3. Implement feature
  4. Update documentation
  5. Submit pull request

Next Steps

  1. Implement documentation processor integration
  2. Add caching layer with proper lifecycle management
  3. Develop task management system
  4. Create monitoring and performance metrics

Support Resources

  • MCP Concepts: mcp-docs/docs/concepts/
  • Python SDK: python-sdk/src/mcp/
  • Example Servers: python-sdk/examples/servers/
Recommend Servers
TraeBuild with Free GPT-4.1 & Claude 3.7. Fully MCP-Ready.
Baidu Map百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
EdgeOne Pages MCPAn MCP service designed for deploying HTML content to EdgeOne Pages and obtaining an accessible public URL.
TimeA Model Context Protocol server that provides time and timezone conversion capabilities. This server enables LLMs to get current time information and perform timezone conversions using IANA timezone names, with automatic system timezone detection.
WindsurfThe new purpose-built IDE to harness magic
Visual Studio Code - Open Source ("Code - OSS")Visual Studio Code
AiimagemultistyleA Model Context Protocol (MCP) server for image generation and manipulation using fal.ai's Stable Diffusion model.
DeepChatYour AI Partner on Desktop
Jina AI MCP ToolsA Model Context Protocol (MCP) server that integrates with Jina AI Search Foundation APIs.
Zhipu Web SearchZhipu Web Search MCP Server is a search engine specifically designed for large models. It integrates four search engines, allowing users to flexibly compare and switch between them. Building upon the web crawling and ranking capabilities of traditional search engines, it enhances intent recognition capabilities, returning results more suitable for large model processing (such as webpage titles, URLs, summaries, site names, site icons, etc.). This helps AI applications achieve "dynamic knowledge acquisition" and "precise scenario adaptation" capabilities.
ChatWiseThe second fastest AI chatbot™
Tavily Mcp
CursorThe AI Code Editor
Amap Maps高德地图官方 MCP Server
MiniMax MCPOfficial MiniMax Model Context Protocol (MCP) server that enables interaction with powerful Text to Speech, image generation and video generation APIs.
Playwright McpPlaywright MCP server
MCP AdvisorMCP Advisor & Installation - Use the right MCP server for your needs
BlenderBlenderMCP connects Blender to Claude AI through the Model Context Protocol (MCP), allowing Claude to directly interact with and control Blender. This integration enables prompt assisted 3D modeling, scene creation, and manipulation.
Howtocook Mcp基于Anduin2017 / HowToCook (程序员在家做饭指南)的mcp server,帮你推荐菜谱、规划膳食,解决“今天吃什么“的世纪难题; Based on Anduin2017/HowToCook (Programmer's Guide to Cooking at Home), MCP Server helps you recommend recipes, plan meals, and solve the century old problem of "what to eat today"
Serper MCP ServerA Serper MCP Server
Y GuiA web-based graphical interface for AI chat interactions with support for multiple AI models and MCP (Model Context Protocol) servers.