- DevDocs MCP Implementation
DevDocs MCP Implementation
Content
DevDocs MCP Implementation
A Model Context Protocol (MCP) implementation for documentation management and integration.
Project Structure
src/
├── resources/
│ ├── templates/ # Resource template system
│ └── managers/ # Resource management
├── documentation/
│ ├── processors/ # Documentation processing
│ └── integrators/ # Integration handlers
├── tasks/
│ ├── issues/ # Issue tracking
│ └── reviews/ # Review management
└── tests/
├── property/ # Property-based tests
└── integration/ # Integration tests
Core Components
Resource Template System
The resource template system provides URI-based access to documentation resources with:
- Type-safe parameter handling through Pydantic
- Flexible URI template matching
- Comprehensive error handling
- State management for resource lifecycle
Example usage:
from src.resources.templates.base import ResourceTemplate
# Create a template with parameter typing
template = ResourceTemplate(
uri_template='docs://api/{version}/endpoint',
parameter_types={'version': str}
)
# Extract and validate parameters
params = template.extract_parameters('docs://api/v1/endpoint')
template.validate_parameters(params)
Testing Strategy
The project uses property-based testing with Hypothesis to ensure:
- URI template validation
- Parameter extraction correctness
- Error handling robustness
- Type safety enforcement
Run tests:
pytest tests/property/test_templates.py
Implementation Progress
Completed
- Basic project structure
- Resource template system
- Property-based testing infrastructure
- URI validation and parameter extraction
- Error handling foundation
In Progress
- Documentation processor integration
- Caching layer implementation
- Task management system
- Performance optimization
Planned
- Search implementation
- Branch mapping system
- State tracking
- Monitoring system
Development Guidelines
-
Follow TDD approach:
- Write property-based tests first
- Implement minimal passing code
- Refactor for clarity and efficiency
-
Error Handling:
- Use structured error types
- Implement recovery strategies
- Maintain system stability
-
Documentation:
- Keep README updated
- Document new features
- Include usage examples
Branch Management
The project uses a branch-based development approach for:
- Feature tracking
- Documentation integration
- Task management
- Progress monitoring
Contributing
- Create feature branch
- Add property tests
- Implement feature
- Update documentation
- Submit pull request
Next Steps
- Implement documentation processor integration
- Add caching layer with proper lifecycle management
- Develop task management system
- Create monitoring and performance metrics
Support Resources
- MCP Concepts:
mcp-docs/docs/concepts/ - Python SDK:
python-sdk/src/mcp/ - Example Servers:
python-sdk/examples/servers/
Recommend Servers
TraeBuild with Free GPT-4.1 & Claude 3.7. Fully MCP-Ready.
WindsurfThe new purpose-built IDE to harness magic
ChatWiseThe second fastest AI chatbot™
BlenderBlenderMCP connects Blender to Claude AI through the Model Context Protocol (MCP), allowing Claude to directly interact with and control Blender. This integration enables prompt assisted 3D modeling, scene creation, and manipulation.
DeepChatYour AI Partner on Desktop
EdgeOne Pages MCPAn MCP service designed for deploying HTML content to EdgeOne Pages and obtaining an accessible public URL.
Context7Context7 MCP Server -- Up-to-date code documentation for LLMs and AI code editors
Serper MCP ServerA Serper MCP Server
Zhipu Web SearchZhipu Web Search MCP Server is a search engine specifically designed for large models. It integrates four search engines, allowing users to flexibly compare and switch between them. Building upon the web crawling and ranking capabilities of traditional search engines, it enhances intent recognition capabilities, returning results more suitable for large model processing (such as webpage titles, URLs, summaries, site names, site icons, etc.). This helps AI applications achieve "dynamic knowledge acquisition" and "precise scenario adaptation" capabilities.
Amap Maps高德地图官方 MCP Server
MCP AdvisorMCP Advisor & Installation - Use the right MCP server for your needs
MiniMax MCPOfficial MiniMax Model Context Protocol (MCP) server that enables interaction with powerful Text to Speech, image generation and video generation APIs.
CursorThe AI Code Editor
TimeA Model Context Protocol server that provides time and timezone conversion capabilities. This server enables LLMs to get current time information and perform timezone conversions using IANA timezone names, with automatic system timezone detection.
Howtocook Mcp基于Anduin2017 / HowToCook (程序员在家做饭指南)的mcp server,帮你推荐菜谱、规划膳食,解决“今天吃什么“的世纪难题;
Based on Anduin2017/HowToCook (Programmer's Guide to Cooking at Home), MCP Server helps you recommend recipes, plan meals, and solve the century old problem of "what to eat today"
Tavily Mcp
Visual Studio Code - Open Source ("Code - OSS")Visual Studio Code
AiimagemultistyleA Model Context Protocol (MCP) server for image generation and manipulation using fal.ai's Stable Diffusion model.
Jina AI MCP ToolsA Model Context Protocol (MCP) server that integrates with Jina AI Search Foundation APIs.
Playwright McpPlaywright MCP server
Baidu Map百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。