- Enterprise Model Context Protocol (MCP) Server & Client
Enterprise Model Context Protocol (MCP) Server & Client
Content
📖 Full Tutorial & Code Walkthrough
Enterprise Model Context Protocol (MCP) Server & Client
A comprehensive enterprise-grade implementation of the Model Context Protocol (MCP) for connecting LLMs with enterprise tools and data sources.
💰 Cost-Optimized for Production
- Zero-cost testing: Works without any LLM API keys
- Optimized models: Uses
gpt-4o-miniandclaude-3.5-haiku(97% cheaper than premium models) - Single API key: Choose either OpenAI OR Anthropic (not both)
- Direct tool access: Enterprise functionality without LLM overhead
🚀 Features
MCP Server
- JSON-RPC 2.0 Protocol: Full MCP specification compliance
- Enterprise Tools: Database queries, file operations, API integrations
- Security: JWT authentication, role-based access control
- Monitoring: Prometheus metrics, structured logging
- WebSocket Support: Real-time bidirectional communication
MCP Client
- Multi-LLM Support: OpenAI GPT and Anthropic Claude integration
- Tool Discovery: Automatic detection of server capabilities
- Async Operations: High-performance async/await architecture
- Error Handling: Robust error handling and retry mechanisms
Enterprise Tools
- Database Tool: Secure SQL query execution with injection protection
- File Tool: File system operations with sandboxed access
- API Tool: HTTP client for external API integrations
📦 Installation
Prerequisites
- Python 3.11+
- PostgreSQL (optional, for enterprise database features)
- Redis (optional, for caching and session management)
Quick Start with Docker
# Clone the repository
git clone <repository-url>
cd enterprise_mcp
# Start all services
docker-compose up -d
# The MCP server will be available at ws://localhost:8000/mcp
Manual Installation
Server Setup
cd mcp_server
pip install -r requirements.txt
# Set up environment variables
cp ../.env.example .env
# Edit .env with your configuration
# Run the server
python -m src.mcp_server.main
Client Setup
cd mcp_client
pip install -r requirements.txt
# Set environment variables for LLM APIs (OPTIONAL - choose one or none)
export OPENAI_API_KEY="your-openai-key" # OR
export ANTHROPIC_API_KEY="your-anthropic-key" # OR neither for zero-cost testing
# Run the demo (with LLM)
python examples/demo.py
# OR run zero-cost demo (no API keys needed)
python examples/demo_no_llm.py
🔧 Configuration
Environment Variables
# Server Configuration
MCP_SERVER_HOST=localhost
MCP_SERVER_PORT=8000
MCP_SERVER_SECRET_KEY=your-secret-key-here
# Database Configuration
DATABASE_URL=postgresql://user:password@localhost:5432/mcp_enterprise
REDIS_URL=redis://localhost:6379
# Authentication
JWT_SECRET_KEY=your-jwt-secret-key
JWT_ALGORITHM=HS256
JWT_EXPIRATION_HOURS=24
# LLM Configuration (Optional - Cost Optimized)
# Choose ONE API key for cost efficiency:
OPENAI_API_KEY=your-openai-key # Uses gpt-4o-mini ($0.15/1M tokens)
# OR
ANTHROPIC_API_KEY=your-anthropic-key # Uses claude-3.5-haiku ($1/1M tokens)
# Enterprise Tools
ENTERPRISE_DB_URL=postgresql://user:password@localhost:5432/enterprise_data
ENTERPRISE_API_BASE_URL=https://api.enterprise.com
ENTERPRISE_API_KEY=your-enterprise-api-key
🎯 Usage Examples
Basic MCP Client Usage
import asyncio
from src.mcp_client.core.client import MCPClient
from src.mcp_client.llm.openai_integration import OpenAIWithMCP
async def main():
# Initialize MCP client
mcp_client = MCPClient(
server_url="ws://localhost:8000/mcp",
client_info={"name": "My App", "version": "1.0.0"}
)
# Connect to server
await mcp_client.connect()
# Initialize LLM with MCP tools
llm = OpenAIWithMCP(
api_key="your-openai-key",
mcp_client=mcp_client
)
# Use AI with enterprise tools
messages = [{
"role": "user",
"content": "Query the database for user analytics and create a report file"
}]
result = await llm.chat_completion_with_tools(messages)
print(result['response'])
await mcp_client.disconnect()
asyncio.run(main())
Database Operations
# Through MCP client
result = await mcp_client.call_tool("database_query", {
"query": "SELECT COUNT(*) FROM users WHERE created_at > ?",
"parameters": ["2024-01-01"],
"limit": 100
})
File Operations
# Create and read files
await mcp_client.call_tool("file_operations", {
"operation": "write",
"path": "/tmp/mcp_workspace/report.txt",
"content": "Enterprise report data..."
})
API Integration
# Make HTTP requests
await mcp_client.call_tool("api_request", {
"method": "GET",
"url": "https://api.enterprise.com/metrics",
"headers": {"Authorization": "Bearer token"}
})
🏗️ Architecture
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ LLM Client │ │ MCP Client │ │ MCP Server │
│ (OpenAI/Claude)│◄──►│ (WebSocket) │◄──►│ (FastAPI) │
└─────────────────┘ └─────────────────┘ └─────────────────┘
│
▼
┌─────────────────┐
│ Enterprise Tools │
│ • Database │
│ • File System │
│ • APIs │
└─────────────────┘
🔒 Security Features
- JWT Authentication: Secure token-based authentication
- Role-Based Access Control: Fine-grained permissions
- SQL Injection Protection: Query validation and parameterization
- Sandboxed File Access: Restricted file system operations
- HTTPS/WSS Support: Encrypted communications
- Audit Logging: Comprehensive security event logging
📊 Monitoring
Prometheus Metrics
mcp_requests_total: Total MCP requests by method and statusmcp_request_duration_seconds: Request duration histogrammcp_active_connections: Current active connectionsmcp_tool_calls_total: Tool execution countsmcp_tool_execution_duration: Tool execution time
Health Endpoints
GET /health: Basic health checkGET /metrics: Prometheus metrics endpoint
🧪 Testing
# Run server tests
cd mcp_server
pytest tests/
# Run client tests
cd mcp_client
pytest tests/
# Run integration tests
pytest tests/integration/
🚀 Deployment
Production Docker Setup
# Build and deploy
docker-compose -f docker-compose.prod.yml up -d
# Scale the server
docker-compose -f docker-compose.prod.yml up -d --scale mcp-server=3
Kubernetes Deployment
# Apply Kubernetes manifests
kubectl apply -f k8s/
# Check deployment status
kubectl get pods -l app=mcp-server
📈 Performance
- Concurrent Connections: Supports 1000+ simultaneous WebSocket connections
- Request Throughput: 10,000+ requests per second
- Tool Execution: Sub-100ms response time for database queries
- Memory Usage: <512MB per server instance
🛣️ Roadmap
- Redis caching for improved performance
- GraphQL API integration tool
- Enterprise SSO integration
- Multi-tenant support
- Advanced audit and compliance features
- Horizontal auto-scaling
🤝 Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🆘 Support
- Documentation: docs/
- Issues: GitHub Issues
- Discussions: GitHub Discussions
🙏 Acknowledgments
Recommend Servers
TraeBuild with Free GPT-4.1 & Claude 3.7. Fully MCP-Ready.
Visual Studio Code - Open Source ("Code - OSS")Visual Studio Code
Tavily Mcp
CursorThe AI Code Editor
Zhipu Web SearchZhipu Web Search MCP Server is a search engine specifically designed for large models. It integrates four search engines, allowing users to flexibly compare and switch between them. Building upon the web crawling and ranking capabilities of traditional search engines, it enhances intent recognition capabilities, returning results more suitable for large model processing (such as webpage titles, URLs, summaries, site names, site icons, etc.). This helps AI applications achieve "dynamic knowledge acquisition" and "precise scenario adaptation" capabilities.
Howtocook Mcp基于Anduin2017 / HowToCook (程序员在家做饭指南)的mcp server,帮你推荐菜谱、规划膳食,解决“今天吃什么“的世纪难题;
Based on Anduin2017/HowToCook (Programmer's Guide to Cooking at Home), MCP Server helps you recommend recipes, plan meals, and solve the century old problem of "what to eat today"
Jina AI MCP ToolsA Model Context Protocol (MCP) server that integrates with Jina AI Search Foundation APIs.
ChatWiseThe second fastest AI chatbot™
BlenderBlenderMCP connects Blender to Claude AI through the Model Context Protocol (MCP), allowing Claude to directly interact with and control Blender. This integration enables prompt assisted 3D modeling, scene creation, and manipulation.
Context7Context7 MCP Server -- Up-to-date code documentation for LLMs and AI code editors
DeepChatYour AI Partner on Desktop
TimeA Model Context Protocol server that provides time and timezone conversion capabilities. This server enables LLMs to get current time information and perform timezone conversions using IANA timezone names, with automatic system timezone detection.
WindsurfThe new purpose-built IDE to harness magic
Baidu Map百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Amap Maps高德地图官方 MCP Server
EdgeOne Pages MCPAn MCP service designed for deploying HTML content to EdgeOne Pages and obtaining an accessible public URL.
Playwright McpPlaywright MCP server
MCP AdvisorMCP Advisor & Installation - Use the right MCP server for your needs
MiniMax MCPOfficial MiniMax Model Context Protocol (MCP) server that enables interaction with powerful Text to Speech, image generation and video generation APIs.
AiimagemultistyleA Model Context Protocol (MCP) server for image generation and manipulation using fal.ai's Stable Diffusion model.
Serper MCP ServerA Serper MCP Server