- Gurddy
Gurddy
Gurddy MCP Server
A comprehensive Model Context Protocol (MCP) server for solving Constraint Satisfaction Problems (CSP), Linear Programming (LP), and Minimax optimization problems. Built on the gurddy optimization library, it supports solving various classic problems through two MCP transports: stdio (for IDE integration) and HTTP/SSE (for web clients).
🚀 Quick Start (Stdio): pip install gurddy_mcp then configure in your IDE
🌐 Quick Start (HTTP): docker run -p 8080:8080 gurddy-mcp or see deployment guide
📦 PyPI Package: https://pypi.org/project/gurddy_mcp
Main Features
🎯 CSP Problem Solving
- N-Queens Problem: Place N queens on an N×N chessboard with no attacks
- Graph Coloring: Assign colors to vertices so adjacent vertices differ
- Map Coloring: Color geographic regions with adjacent regions differing
- Sudoku Solver: Solve standard 9×9 Sudoku puzzles
- Logic Puzzles: Einstein's Zebra puzzle and custom logic problems
- Scheduling: Course scheduling, meeting scheduling, resource allocation
- General CSP Solver: Support for custom constraint satisfaction problems
📊 LP/Optimization Problems
- Linear Programming: Continuous variable optimization with linear constraints
- Mixed Integer Programming: Optimization with integer and continuous variables
- Production Planning: Resource-constrained production optimization with sensitivity analysis
- Portfolio Optimization: Investment allocation under risk constraints
- Transportation Problems: Supply chain and logistics optimization
🎮 Minimax/Game Theory
- Zero-Sum Games: Solve two-player games (Rock-Paper-Scissors, Matching Pennies, Battle of Sexes)
- Mixed Strategy Nash Equilibria: Find optimal probabilistic strategies
- Robust Optimization: Minimize worst-case loss under uncertainty
- Maximin Decisions: Maximize worst-case gain (conservative strategies)
- Security Games: Defender-attacker resource allocation
- Robust Portfolio: Minimize maximum loss across market scenarios
- Production Planning: Conservative production decisions (maximize minimum profit)
- Advertising Competition: Market share games and competitive strategies
🔌 MCP Protocol Support
- Stdio Transport: Local IDE integration (Kiro, Claude Desktop, Cline, etc.)
- HTTP/SSE Transport: Web clients and remote access
- Unified Interface: Same tools across both transports
- JSON-RPC 2.0: Full protocol compliance
- Auto-approval: Configure trusted tools for seamless execution
Installation
From PyPI (Recommended)
# Install the latest stable version
pip install gurddy_mcp
# Or install with development dependencies
pip install gurddy_mcp[dev]
From Source
# Clone the repository
git clone https://github.com/novvoo/gurddy-mcp.git
cd gurddy-mcp
# Install in development mode
pip install -e .
# Or install dependencies manually
pip install -r requirements.txt
Verify Installation
# Test MCP stdio server
echo '{"jsonrpc":"2.0","id":1,"method":"tools/list","params":{}}' | gurddy-mcp
Usage
1. MCP Stdio Server (Primary Interface)
The main gurddy-mcp command is an MCP stdio server that can be integrated with tools like Kiro.
Option A: Using uvx (Recommended - Always Latest Version)
Using uvx ensures you always run the latest published version without manual installation.
Configure in ~/.kiro/settings/mcp.json or .kiro/settings/mcp.json:
Recommended: Explicit latest version
{
"mcpServers": {
"gurddy": {
"command": "uvx",
"args": ["gurddy-mcp@latest"],
"env": {},
"disabled": false,
"autoApprove": [
"run_example",
"info",
"install",
"solve_n_queens",
"solve_sudoku",
"solve_graph_coloring",
"solve_map_coloring",
"solve_lp",
"solve_production_planning"
]
}
}
}
Alternative: Without version specifier (also uses latest)
{
"mcpServers": {
"gurddy": {
"command": "uvx",
"args": ["gurddy-mcp"],
"env": {},
"disabled": false,
"autoApprove": ["run_example", "info", "install", "solve_n_queens", "solve_sudoku", "solve_graph_coloring", "solve_map_coloring", "solve_lp", "solve_production_planning", "solve_minimax_game", "solve_minimax_decision"]
}
}
}
Pin to specific version (if needed)
{
"mcpServers": {
"gurddy": {
"command": "uvx",
"args": ["gurddy-mcp==0.1.3"],
"env": {},
"disabled": false,
"autoApprove": ["run_example", "info", "install", "solve_n_queens", "solve_sudoku", "solve_graph_coloring", "solve_map_coloring", "solve_lp", "solve_production_planning", "solve_minimax_game", "solve_minimax_decision"]
}
}
}
Why use uvx?
- ✅ Always runs the latest published version automatically
- ✅ No manual installation or upgrade needed
- ✅ Isolated environment per execution
- ✅ No dependency conflicts with your system Python
Prerequisites: Install uv first:
# macOS/Linux
curl -LsSf https://astral.sh/uv/install.sh | sh
# Or using pip
pip install uv
# Or using Homebrew (macOS)
brew install uv
Option B: Using Direct Command (After Installation)
If you've already installed gurddy-mcp via pip:
{
"mcpServers": {
"gurddy": {
"command": "gurddy-mcp",
"args": [],
"env": {},
"disabled": false,
"autoApprove": [
"run_example",
"info",
"install",
"solve_n_queens",
"solve_sudoku",
"solve_graph_coloring",
"solve_map_coloring",
"solve_lp",
"solve_production_planning",
"solve_minimax_game",
"solve_minimax_decision"
]
}
}
}
Available MCP tools (13 total):
info- Get gurddy MCP server information and capabilitiesinstall- Install or upgrade the gurddy packagerun_example- Run example programs (n_queens, graph_coloring, minimax, logic_puzzles, etc.)solve_n_queens- Solve N-Queens problem for any board sizesolve_sudoku- Solve 9×9 Sudoku puzzles using CSPsolve_graph_coloring- Solve graph coloring with configurable colorssolve_map_coloring- Solve map coloring problems (e.g., Australia, USA)solve_lp- Solve Linear Programming (LP) or Mixed Integer Programming (MIP)solve_production_planning- Production optimization with optional sensitivity analysissolve_minimax_game- Two-player zero-sum games (find Nash equilibria)solve_minimax_decision- Robust optimization (minimize max loss or maximize min gain)
Test the MCP server:
# Test initialization
echo '{"jsonrpc":"2.0","id":1,"method":"initialize","params":{"protocolVersion":"2024-11-05","capabilities":{},"clientInfo":{"name":"test","version":"1.0"}}}' | gurddy-mcp
# Test listing tools
echo '{"jsonrpc":"2.0","id":2,"method":"tools/list","params":{}}' | gurddy-mcp
2. MCP HTTP Server
Start the HTTP MCP server (MCP protocol over HTTP/SSE):
Local Development:
uvicorn mcp_server.mcp_http_server:app --host 127.0.0.1 --port 8080
Docker:
# Build the image
docker build -t gurddy-mcp .
# Run the container
docker run -p 8080:8080 gurddy-mcp
Access the server:
- Root: http://127.0.0.1:8080/
- Health check: http://127.0.0.1:8080/health
- SSE endpoint: http://127.0.0.1:8080/sse
- Message endpoint: http://127.0.0.1:8080/message (POST)
Test the HTTP MCP server:
# List available tools
curl -X POST http://127.0.0.1:8080/message \
-H "Content-Type: application/json" \
-d '{"jsonrpc":"2.0","id":1,"method":"tools/list","params":{}}'
# Call a tool
curl -X POST http://127.0.0.1:8080/message \
-H "Content-Type: application/json" \
-d '{"jsonrpc":"2.0","id":2,"method":"tools/call","params":{"name":"info","arguments":{}}}'
Python Client Example:
See examples/http_mcp_client.py for a complete example of how to interact with the HTTP MCP server.
MCP Tools
The server provides the following MCP tools:
info
Get information about the gurddy package.
{
"name": "info",
"arguments": {}
}
install
Install or upgrade the gurddy package.
{
"name": "install",
"arguments": {
"package": "gurddy",
"upgrade": false
}
}
run_example
Run a gurddy example.
{
"name": "run_example",
"arguments": {
"example": "n_queens"
}
}
Available examples: lp, csp, n_queens, graph_coloring, map_coloring, scheduling, logic_puzzles, optimized_csp, optimized_lp, minimax
solve_n_queens
Solve the N-Queens problem.
{
"name": "solve_n_queens",
"arguments": {
"n": 8
}
}
solve_sudoku
Solve a 9x9 Sudoku puzzle.
{
"name": "solve_sudoku",
"arguments": {
"puzzle": [[5,3,0,...], [6,0,0,...], ...]
}
}
solve_graph_coloring
Solve graph coloring problem.
{
"name": "solve_graph_coloring",
"arguments": {
"edges": [[0,1], [1,2], [2,0]],
"num_vertices": 3,
"max_colors": 3
}
}
solve_map_coloring
Solve map coloring problem.
{
"name": "solve_map_coloring",
"arguments": {
"regions": ["A", "B", "C"],
"adjacencies": [["A", "B"], ["B", "C"]],
"max_colors": 2
}
}
solve_lp
Solve a Linear Programming (LP) or Mixed Integer Programming (MIP) problem using PuLP.
{
"name": "solve_lp",
"arguments": {
"profits": {
"ProductA": 30,
"ProductB": 40
},
"consumption": {
"ProductA": {"Labor": 2, "Material": 3},
"ProductB": {"Labor": 3, "Material": 2}
},
"capacities": {
"Labor": 100,
"Material": 120
},
"integer": true
}
}
solve_production_planning
Solve a production planning optimization problem with optional sensitivity analysis.
{
"name": "solve_production_planning",
"arguments": {
"profits": {
"ProductA": 30,
"ProductB": 40
},
"consumption": {
"ProductA": {"Labor": 2, "Material": 3},
"ProductB": {"Labor": 3, "Material": 2}
},
"capacities": {
"Labor": 100,
"Material": 120
},
"integer": true,
"sensitivity_analysis": false
}
}
solve_minimax_game
Solve a two-player zero-sum game using minimax (game theory).
{
"name": "solve_minimax_game",
"arguments": {
"payoff_matrix": [
[0, -1, 1],
[1, 0, -1],
[-1, 1, 0]
],
"player": "row"
}
}
Returns the optimal mixed strategy and game value for the specified player.
solve_minimax_decision
Solve a minimax decision problem under uncertainty (robust optimization).
{
"name": "solve_minimax_decision",
"arguments": {
"scenarios": [
{"A": -0.2, "B": -0.1, "C": 0.05},
{"A": 0.3, "B": 0.2, "C": -0.02},
{"A": 0.05, "B": 0.03, "C": -0.01}
],
"decision_vars": ["A", "B", "C"],
"budget": 100.0,
"objective": "minimize_max_loss"
}
}
Objectives: minimize_max_loss (robust portfolio) or maximize_min_gain (conservative production)
Docker Deployment
Build and Run
# Build the image
docker build -t gurddy-mcp .
# Run the container
docker run -p 8080:8080 gurddy-mcp
# Or with environment variables
docker run -p 8080:8080 -e PORT=8080 gurddy-mcp
Docker Compose
version: '3.8'
services:
gurddy-mcp:
build: .
ports:
- "8080:8080"
environment:
- PYTHONUNBUFFERED=1
restart: unless-stopped
Example Output
N-Queens Problem
POST /solve-n-queens
{
"n": 8
}
Project Structure
mcp_server/
├── handlers/
│ └── gurddy.py # Core solver implementation
├── tools/ # MCP tool wrappers
├── examples/ # Rich CSP Problem Examples
│ ├── n_queens.py # N-Queens Problem
│ ├── graph_coloring.py # Graph Coloring Problem
│ ├── map_coloring.py # Map Coloring Problem
│ ├── logic_puzzles.py # Logic Puzzles
│ └── scheduling.py # Scheduling Problem
├── mcp_stdio_server.py # MCP Stdio Server (for IDE integration)
└── mcp_http_server.py # MCP HTTP Server (for web clients)
examples/
└── http_mcp_client.py # Example HTTP MCP client
Dockerfile # Docker configuration for HTTP server
MCP Transports
| Transport | Command | Protocol | Use Case |
|---|---|---|---|
| Stdio | gurddy-mcp | MCP over stdin/stdout | IDE integration (Kiro, Claude Desktop, etc.) |
| HTTP | uvicorn mcp_server.mcp_http_server:app | MCP over HTTP/SSE | Web clients, remote access, Docker deployment |
Both transports implement the same MCP protocol and provide identical tools.
Example Output
N-Queens Problem
$ gurddy-mcp-cli run-example n_queens
Solving 8-Queens problem...
8-Queens Solution:
+---+---+---+---+---+---+---+---+
| Q | | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | Q | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | | Q |
+---+---+---+---+---+---+---+---+
| | | | | | Q | | |
+---+---+---+---+---+---+---+---+
| | | Q | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | Q | |
+---+---+---+---+---+---+---+---+
| | Q | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | Q | | | | |
+---+---+---+---+---+---+---+---+
Queen positions: (0,0), (1,4), (2,7), (3,5), (4,2), (5,6), (6,1), (7,3)
Logic Puzzles
$ python -m mcp_server.server run-example logic_puzzles
Solving Simple Logic Puzzle:
Solution:
Position 1: Alice has Cat in Green house
Position 2: Bob has Dog in Red house
Position 3: Carol has Fish in Blue house
Solving the Famous Zebra Puzzle (Einstein's Riddle)...
ANSWERS:
Who owns the zebra? Ukrainian (House 5)
Who drinks water? Japanese (House 2)
HTTP API Examples
Classic Problem Solving
Australian Map Coloring
import requests
response = requests.post("http://127.0.0.1:8080/solve-map-coloring", json={
"regions": ['WA', 'NT', 'SA', 'QLD', 'NSW', 'VIC', 'TAS'],
"adjacencies": [
['WA', 'NT'], ['WA', 'SA'], ['NT', 'SA'], ['NT', 'QLD'],
['SA', 'QLD'], ['SA', 'NSW'], ['SA', 'VIC'],
['QLD', 'NSW'], ['NSW', 'VIC']
],
"max_colors": 4
})
8-Queens Problem
response = requests.post("http://127.0.0.1:8080/solve-n-queens",
json={"n": 8})
Available Examples
All examples can be run using gurddy-mcp run-example <name> or python -m mcp_server.server run-example <name>:
CSP Examples ✅
- n_queens - N-Queens problem (4, 6, 8 queens with visual board display)
- graph_coloring - Graph coloring (Triangle, Square, Petersen graph, Wheel graph)
- map_coloring - Map coloring (Australia, USA Western states, Europe)
- scheduling - Scheduling problems (Course scheduling, meeting scheduling, resource allocation)
- logic_puzzles - Logic puzzles (Simple logic puzzle, Einstein's Zebra puzzle)
- optimized_csp - Advanced CSP techniques (Sudoku solver)
LP Examples ✅
- lp / optimized_lp - Linear programming examples:
- Portfolio optimization with risk constraints
- Transportation problem (supply chain optimization)
- Constraint relaxation analysis
- Performance comparison across problem sizes
Minimax Examples ✅
- minimax - Minimax optimization and game theory:
- Rock-Paper-Scissors (zero-sum game)
- Matching Pennies (coordination game)
- Battle of the Sexes (mixed strategy equilibrium)
- Robust portfolio optimization (minimize maximum loss)
- Production planning (maximize minimum profit)
- Security resource allocation (defender-attacker game)
- Advertising competition (market share game)
Supported Problem Types
🧩 CSP Problems
- N-Queens: Classic N-Queens problem for any board size (N=4 to N=100+)
- Graph Coloring: Vertex coloring for arbitrary graphs (triangle, Petersen, wheel, etc.)
- Map Coloring: Geographic region coloring (Australia, USA, Europe maps)
- Sudoku: Standard 9×9 Sudoku puzzles with constraint propagation
- Logic Puzzles: Einstein's Zebra puzzle and custom logical reasoning problems
- Scheduling: Course scheduling, meeting rooms, resource allocation with time constraints
📈 Optimization Problems
- Linear Programming: Continuous variable optimization with linear constraints
- Integer Programming: Discrete variable optimization (production quantities, assignments)
- Mixed Integer Programming: Combined continuous and discrete variables
- Production Planning: Multi-product resource-constrained optimization
- Portfolio Optimization: Investment allocation with risk and return constraints
- Transportation: Supply chain optimization (warehouses to customers)
🎲 Game Theory & Robust Optimization
- Zero-Sum Games: Rock-Paper-Scissors, Matching Pennies, Battle of Sexes
- Mixed Strategy Nash Equilibria: Optimal probabilistic strategies for both players
- Minimax Decisions: Minimize worst-case loss across uncertainty scenarios
- Maximin Decisions: Maximize worst-case gain (conservative strategies)
- Robust Portfolio: Minimize maximum loss across market scenarios
- Security Games: Defender-attacker resource allocation problems
Performance Features
- Fast Solution: Millisecond response for small-medium problems (N-Queens N≤12, graphs <50 vertices)
- Scalable: Handles large problems (N-Queens N=100+, LP with 1000+ variables)
- Memory Efficient: Backtracking search and constraint propagation minimize memory usage
- Extensible: Custom constraints, objective functions, and problem types
- Concurrency-Safe: HTTP API supports concurrent request processing
- Production Ready: Docker deployment, health checks, error handling
Performance Benchmarks
Typical execution times on standard hardware:
- CSP Examples: 0.4-0.5s (N-Queens, Graph Coloring, Logic Puzzles)
- LP Examples: 0.8-0.9s (Portfolio, Transportation, Production Planning)
- Minimax Examples: 0.3-0.5s (Game solving, Robust optimization)
- Sudoku: <0.1s for standard 9×9 puzzles
- Large N-Queens: ~2-3s for N=100
Troubleshooting
Common Errors
"gurddy package not available": Install withpython -m mcp_server.server install"No solution found": No solution exists under given constraints; try relaxing constraints"Invalid input types": Check the data types of input parameters"Unknown example": Usepython -m mcp_server.server run-example --helpto see available examples
Installation Issues
# Install all dependencies
pip install -r requirements.txt
# Or install individually
pip install gurddy>=0.1.6 pulp>=2.6.0
# Check installation
python -c "import gurddy, pulp; print('All dependencies installed')"
Example Debugging
Run examples directly for debugging:
# After installing gurddy_mcp
python -c "from mcp_server.examples import n_queens; n_queens.main()"
# Or from source
python mcp_server/examples/n_queens.py
python mcp_server/examples/graph_coloring.py
python mcp_server/examples/logic_puzzles.py
Extension Development
Adding a New CSP Problem
- In
mcp_server/examples/Create a problem implementation inmcp_server/handlers/gurddy.py - Add the solver function in
mcp_server/handlers/gurddy.py - Add the API endpoint in
mcp_server/mcp_http_server.py
Custom Constraints
# Define a custom constraint in gurddy
def custom_constraint(var1, var2):
return var1 + var2 <= 10
model.addConstraint(gurddy.FunctionConstraint(custom_constraint, (var1, var2)))
License
This project is licensed under an open source license. Please see the LICENSE file for details.
Server Config
{
"mcpServers": {
"gurddy": {
"command": "uvx",
"args": [
"gurddy-mcp@latest"
],
"env": {},
"disabled": false,
"autoApprove": [
"run_example",
"info",
"install",
"solve_n_queens",
"solve_sudoku",
"solve_graph_coloring",
"solve_map_coloring",
"solve_lp",
"solve_production_planning"
]
}
}
}