Sponsored by Deepsite.site

Knowledge Base MCP Server

Created By
MCP-Mirror9 months ago
Mirror of
Content

Knowledge Base MCP Server

This MCP server provides tools for listing and retrieving content from different knowledge bases.

Knowledge Base Server MCP server

Setup Instructions

These instructions assume you have Node.js and npm installed on your system.

Prerequisites

  • Node.js (version 16 or higher)
  • npm (Node Package Manager)
  1. Clone the repository:

    git clone <repository_url>
    cd knowledge-base-mcp-server
    
  2. Install dependencies:

    npm install
    
  3. Configure environment variables:

    • The server requires the HUGGINGFACE_API_KEY environment variable to be set. This is the API key for the Hugging Face Inference API, which is used to generate embeddings for the knowledge base content. You can obtain a free API key from the Hugging Face website (https://huggingface.co/).
    • The server requires the KNOWLEDGE_BASES_ROOT_DIR environment variable to be set. This variable specifies the directory where the knowledge base subdirectories are located. If you don't set this variable, it will default to $HOME/knowledge_bases, where $HOME is the current user's home directory.
    • The server supports the FAISS_INDEX_PATH environment variable to specify the path to the FAISS index. If not set, it will default to $HOME/knowledge_bases/.faiss.
    • The server supports the HUGGINGFACE_MODEL_NAME environment variable to specify the Hugging Face model to use for generating embeddings. If not set, it will default to sentence-transformers/all-MiniLM-L6-v2.
    • You can set these environment variables in your .bashrc or .zshrc file, or directly in the MCP settings.
  4. Build the server:

    npm run build
    
  5. Add the server to the MCP settings:

    • Edit the cline_mcp_settings.json file located at /home/jean/.vscode-server/data/User/globalStorage/saoudrizwan.claude-dev/settings/.
    • Add the following configuration to the mcpServers object:
    "knowledge-base-mcp": {
      "command": "node",
      "args": [
        "/path/to/knowledge-base-mcp-server/build/index.js"
      ],
      "disabled": false,
      "autoApprove": [],
      "env": {
        "KNOWLEDGE_BASES_ROOT_DIR": "/path/to/knowledge_bases",
        "HUGGINGFACE_API_KEY": "YOUR_HUGGINGFACE_API_KEY",
      },
      "description": "Retrieves similar chunks from the knowledge base based on a query."
    },
    
    • Replace /path/to/knowledge-base-mcp-server with the actual path to the server directory.
    • Replace /path/to/knowledge_bases with the actual path to the knowledge bases directory.
  6. Create knowledge base directories:

    • Create subdirectories within the KNOWLEDGE_BASES_ROOT_DIR for each knowledge base (e.g., company, it_support, onboarding).
    • Place text files (e.g., .txt, .md) containing the knowledge base content within these subdirectories.
  • The server recursively reads all text files (e.g., .txt, .md) within the specified knowledge base subdirectories.
  • The server skips hidden files and directories (those starting with a .).
  • For each file, the server calculates the SHA256 hash and stores it in a file with the same name in a hidden .index subdirectory. This hash is used to determine if the file has been modified since the last indexing.
  • The file content is splitted into chunks using the MarkdownTextSplitter from langchain/text_splitter.
  • The content of each chunk is then added to a FAISS index, which is used for similarity search.
  • The FAISS index is automatically initialized when the server starts. It checks for changes in the knowledge base files and updates the index accordingly.

Usage

The server exposes two tools:

  • list_knowledge_bases: Lists the available knowledge bases.
  • retrieve_knowledge: Retrieves similar chunks from the knowledge base based on a query. Optionally, if a knowledge base is specified, only that one is searched; otherwise, all available knowledge bases are considered. By default, at most 10 document chunks are returned with a score below a threshold of 2. A different threshold can optionally be provided using the threshold parameter.

You can use these tools through the MCP interface.

The retrieve_knowledge tool performs a semantic search using a FAISS index. The index is automatically updated when the server starts or when a file in a knowledge base is modified.

The output of the retrieve_knowledge tool is a markdown formatted string with the following structure:

## Semantic Search Results

**Result 1:**

[Content of the most similar chunk]

**Source:**
```json
{
  "source": "[Path to the file containing the chunk]"
}
```

---

**Result 2:**

[Content of the second most similar chunk]

**Source:**
```json
{
  "source": "[Path to the file containing the chunk]"
}
```

> **Disclaimer:** The provided results might not all be relevant. Please cross-check the relevance of the information.

Each result includes the content of the most similar chunk, the source file, and a similarity score.

Recommend Servers
TraeBuild with Free GPT-4.1 & Claude 3.7. Fully MCP-Ready.
AiimagemultistyleA Model Context Protocol (MCP) server for image generation and manipulation using fal.ai's Stable Diffusion model.
Zhipu Web SearchZhipu Web Search MCP Server is a search engine specifically designed for large models. It integrates four search engines, allowing users to flexibly compare and switch between them. Building upon the web crawling and ranking capabilities of traditional search engines, it enhances intent recognition capabilities, returning results more suitable for large model processing (such as webpage titles, URLs, summaries, site names, site icons, etc.). This helps AI applications achieve "dynamic knowledge acquisition" and "precise scenario adaptation" capabilities.
ChatWiseThe second fastest AI chatbot™
TimeA Model Context Protocol server that provides time and timezone conversion capabilities. This server enables LLMs to get current time information and perform timezone conversions using IANA timezone names, with automatic system timezone detection.
Baidu Map百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Howtocook Mcp基于Anduin2017 / HowToCook (程序员在家做饭指南)的mcp server,帮你推荐菜谱、规划膳食,解决“今天吃什么“的世纪难题; Based on Anduin2017/HowToCook (Programmer's Guide to Cooking at Home), MCP Server helps you recommend recipes, plan meals, and solve the century old problem of "what to eat today"
Serper MCP ServerA Serper MCP Server
Context7Context7 MCP Server -- Up-to-date code documentation for LLMs and AI code editors
Tavily Mcp
Playwright McpPlaywright MCP server
Amap Maps高德地图官方 MCP Server
Visual Studio Code - Open Source ("Code - OSS")Visual Studio Code
MiniMax MCPOfficial MiniMax Model Context Protocol (MCP) server that enables interaction with powerful Text to Speech, image generation and video generation APIs.
Jina AI MCP ToolsA Model Context Protocol (MCP) server that integrates with Jina AI Search Foundation APIs.
CursorThe AI Code Editor
MCP AdvisorMCP Advisor & Installation - Use the right MCP server for your needs
DeepChatYour AI Partner on Desktop
BlenderBlenderMCP connects Blender to Claude AI through the Model Context Protocol (MCP), allowing Claude to directly interact with and control Blender. This integration enables prompt assisted 3D modeling, scene creation, and manipulation.
WindsurfThe new purpose-built IDE to harness magic
EdgeOne Pages MCPAn MCP service designed for deploying HTML content to EdgeOne Pages and obtaining an accessible public URL.