- LinkedIn Model Context Protocol (MCP) Server
LinkedIn Model Context Protocol (MCP) Server
A powerful Model Context Protocol server for LinkedIn interactions that enables AI assistants to search for jobs, generate resumes and cover letters, and manage job applications programmatically.
Content
LinkedIn Model Context Protocol (MCP) Server
A powerful Model Context Protocol server for LinkedIn interactions that enables AI assistants to search for jobs, generate resumes and cover letters, and manage job applications programmatically.
Features
- Authentication: Secure LinkedIn authentication with session management
- Profile Management: Access and update LinkedIn profile information
- Job Search: Search for jobs with flexible filtering options
- Resume Generation: Create customized resumes from LinkedIn profiles
- Cover Letter Generation: Generate tailored cover letters for specific job applications
- Job Applications: Submit and track job applications
Architecture
This project implements the Model Context Protocol (MCP) specification, allowing AI assistants to interact with LinkedIn through standardized JSON-RPC style requests and responses.
Components:
- MCP Handler: Routes requests to appropriate service handlers
- API Modules: Specialized modules for LinkedIn interactions (auth, job search, profile, etc.)
- Core Protocol: Defines request/response structures and data models
- Utilities: Configuration management and helper functions
Installation
# Clone the repository
git clone https://github.com/yourusername/linkedin-mcp.git
cd linkedin-mcp
# Create and activate a virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dependencies
pip install -r requirements.txt
Configuration
Create a .env file in the project root with the following variables:
# LinkedIn Credentials
LINKEDIN_USERNAME=your_email@example.com
LINKEDIN_PASSWORD=your_password
# API Settings
OPENAI_API_KEY=your_openai_api_key
SESSION_DIR=sessions
DATA_DIR=data
Usage
Starting the Server
python server.py
Example MCP Requests
Authentication
{
"jsonrpc": "2.0",
"id": 1,
"method": "linkedin.login",
"params": {
"username": "user@example.com",
"password": "password123"
}
}
Searching for Jobs
{
"jsonrpc": "2.0",
"id": 2,
"method": "linkedin.searchJobs",
"params": {
"filter": {
"keywords": "software engineer",
"location": "New York, NY",
"distance": 25
},
"page": 1,
"count": 20
}
}
Generating a Resume
{
"jsonrpc": "2.0",
"id": 3,
"method": "linkedin.generateResume",
"params": {
"profileId": "user123",
"template": "standard",
"format": "pdf"
}
}
Available Methods
| Method | Description |
|---|---|
linkedin.login | Authenticate with LinkedIn |
linkedin.logout | End the current session |
linkedin.checkSession | Check if the current session is valid |
linkedin.getFeed | Get LinkedIn feed posts |
linkedin.getProfile | Get LinkedIn profile information |
linkedin.getCompany | Get company profile information |
linkedin.searchJobs | Search for jobs with filters |
linkedin.getJobDetails | Get detailed information about a job |
linkedin.getRecommendedJobs | Get job recommendations |
linkedin.generateResume | Generate a resume from a LinkedIn profile |
linkedin.generateCoverLetter | Generate a cover letter for a job application |
linkedin.tailorResume | Customize a resume for a specific job |
linkedin.applyToJob | Apply to a job |
linkedin.getApplicationStatus | Check application status |
linkedin.getSavedJobs | Get saved jobs |
linkedin.saveJob | Save a job for later |
Development
Project Structure
linkedin-mcp/
├── README.md
├── requirements.txt
├── server.py
├── data/
│ ├── applications/
│ ├── companies/
│ ├── cover_letters/
│ ├── jobs/
│ ├── profiles/
│ └── resumes/
├── linkedin_mcp/
│ ├── api/
│ │ ├── auth.py
│ │ ├── cover_letter_generator.py
│ │ ├── job_application.py
│ │ ├── job_search.py
│ │ ├── profile.py
│ │ └── resume_generator.py
│ ├── core/
│ │ ├── mcp_handler.py
│ │ └── protocol.py
│ └── utils/
│ └── config.py
├── sessions/
└── templates/
├── cover_letter/
│ └── standard.html
└── resume/
└── standard.html
Running Tests
pytest
License
This project is licensed under the MIT License - see the LICENSE file for details.
Acknowledgments
- LinkedIn API documentation
- Model Context Protocol specification
Recommend Servers
TraeBuild with Free GPT-4.1 & Claude 3.7. Fully MCP-Ready.
Playwright McpPlaywright MCP server
AiimagemultistyleA Model Context Protocol (MCP) server for image generation and manipulation using fal.ai's Stable Diffusion model.
Amap Maps高德地图官方 MCP Server
Y GuiA web-based graphical interface for AI chat interactions with support for multiple AI models and MCP (Model Context Protocol) servers.
EdgeOne Pages MCPAn MCP service designed for deploying HTML content to EdgeOne Pages and obtaining an accessible public URL.
ChatWiseThe second fastest AI chatbot™
Howtocook Mcp基于Anduin2017 / HowToCook (程序员在家做饭指南)的mcp server,帮你推荐菜谱、规划膳食,解决“今天吃什么“的世纪难题;
Based on Anduin2017/HowToCook (Programmer's Guide to Cooking at Home), MCP Server helps you recommend recipes, plan meals, and solve the century old problem of "what to eat today"
WindsurfThe new purpose-built IDE to harness magic
Jina AI MCP ToolsA Model Context Protocol (MCP) server that integrates with Jina AI Search Foundation APIs.
MCP AdvisorMCP Advisor & Installation - Use the right MCP server for your needs
Baidu Map百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
DeepChatYour AI Partner on Desktop
Zhipu Web SearchZhipu Web Search MCP Server is a search engine specifically designed for large models. It integrates four search engines, allowing users to flexibly compare and switch between them. Building upon the web crawling and ranking capabilities of traditional search engines, it enhances intent recognition capabilities, returning results more suitable for large model processing (such as webpage titles, URLs, summaries, site names, site icons, etc.). This helps AI applications achieve "dynamic knowledge acquisition" and "precise scenario adaptation" capabilities.
MiniMax MCPOfficial MiniMax Model Context Protocol (MCP) server that enables interaction with powerful Text to Speech, image generation and video generation APIs.
Serper MCP ServerA Serper MCP Server
Tavily Mcp
BlenderBlenderMCP connects Blender to Claude AI through the Model Context Protocol (MCP), allowing Claude to directly interact with and control Blender. This integration enables prompt assisted 3D modeling, scene creation, and manipulation.
Visual Studio Code - Open Source ("Code - OSS")Visual Studio Code
CursorThe AI Code Editor
TimeA Model Context Protocol server that provides time and timezone conversion capabilities. This server enables LLMs to get current time information and perform timezone conversions using IANA timezone names, with automatic system timezone detection.