Sponsored by Deepsite.site

MCP OpenVision

Created By
Nazruden9 months ago
MCP Server using OpenRouter models to get descriptions for images
Content

MCP OpenVision

CI PyPI version Python Versions License: MIT Buy Me A Coffee smithery badge

Overview

MCP OpenVision is a Model Context Protocol (MCP) server that provides image analysis capabilities powered by OpenRouter vision models. It enables AI assistants to analyze images via a simple interface within the MCP ecosystem.

Installation

Installing via Smithery

To install mcp-openvision for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @Nazruden/mcp-openvision --client claude

Using pip

pip install mcp-openvision
uv pip install mcp-openvision

Configuration

MCP OpenVision requires an OpenRouter API key and can be configured through environment variables:

  • OPENROUTER_API_KEY (required): Your OpenRouter API key
  • OPENROUTER_DEFAULT_MODEL (optional): The vision model to use

OpenRouter Vision Models

MCP OpenVision works with any OpenRouter model that supports vision capabilities. The default model is qwen/qwen2.5-vl-32b-instruct:free, but you can specify any other compatible model.

Some popular vision models available through OpenRouter include:

  • qwen/qwen2.5-vl-32b-instruct:free (default)
  • anthropic/claude-3-5-sonnet
  • anthropic/claude-3-opus
  • anthropic/claude-3-sonnet
  • openai/gpt-4o

You can specify custom models by setting the OPENROUTER_DEFAULT_MODEL environment variable or by passing the model parameter directly to the image_analysis function.

Usage

Testing with MCP Inspector

The easiest way to test MCP OpenVision is with the MCP Inspector tool:

npx @modelcontextprotocol/inspector uvx mcp-openvision

Integration with Claude Desktop or Cursor

  1. Edit your MCP configuration file:

    • Windows: %USERPROFILE%\.cursor\mcp.json
    • macOS: ~/.cursor/mcp.json or ~/Library/Application Support/Claude/claude_desktop_config.json
  2. Add the following configuration:

{
  "mcpServers": {
    "openvision": {
      "command": "uvx",
      "args": ["mcp-openvision"],
      "env": {
        "OPENROUTER_API_KEY": "your_openrouter_api_key_here",
        "OPENROUTER_DEFAULT_MODEL": "anthropic/claude-3-sonnet"
      }
    }
  }
}

Running Locally for Development

# Set the required API key
export OPENROUTER_API_KEY="your_api_key"

# Run the server module directly
python -m mcp_openvision

Features

MCP OpenVision provides the following core tool:

  • image_analysis: Analyze images with vision models, supporting various parameters:
    • image: Can be provided as:
      • Base64-encoded image data
      • Image URL (http/https)
      • Local file path
    • query: User instruction for the image analysis task
    • system_prompt: Instructions that define the model's role and behavior (optional)
    • model: Vision model to use
    • temperature: Controls randomness (0.0-1.0)
    • max_tokens: Maximum response length

Crafting Effective Queries

The query parameter is crucial for getting useful results from the image analysis. A well-crafted query provides context about:

  1. Purpose: Why you're analyzing this image
  2. Focus areas: Specific elements or details to pay attention to
  3. Required information: The type of information you need to extract
  4. Format preferences: How you want the results structured

Examples of Effective Queries

Basic QueryEnhanced Query
"Describe this image""Identify all retail products visible in this store shelf image and estimate their price range"
"What's in this image?""Analyze this medical scan for abnormalities, focusing on the highlighted area and providing possible diagnoses"
"Analyze this chart""Extract the numerical data from this bar chart showing quarterly sales, and identify the key trends from 2022-2023"
"Read the text""Transcribe all visible text in this restaurant menu, preserving the item names, descriptions, and prices"

By providing context about why you need the analysis and what specific information you're seeking, you help the model focus on relevant details and produce more valuable insights.

Example Usage

# Analyze an image from a URL
result = await image_analysis(
    image="https://example.com/image.jpg",
    query="Describe this image in detail"
)

# Analyze an image from a local file with a focused query
result = await image_analysis(
    image="path/to/local/image.jpg",
    query="Identify all traffic signs in this street scene and explain their meanings for a driver education course"
)

# Analyze with a base64-encoded image and a specific analytical purpose
result = await image_analysis(
    image="SGVsbG8gV29ybGQ=...",  # base64 data
    query="Examine this product packaging design and highlight elements that could be improved for better visibility and brand recognition"
)

# Customize the system prompt for specialized analysis
result = await image_analysis(
    image="path/to/local/image.jpg",
    query="Analyze the composition and artistic techniques used in this painting, focusing on how they create emotional impact",
    system_prompt="You are an expert art historian with deep knowledge of painting techniques and art movements. Focus on formal analysis of composition, color, brushwork, and stylistic elements."
)

Image Input Types

The image_analysis tool accepts several types of image inputs:

  1. Base64-encoded strings
  2. Image URLs - must start with http:// or https://
  3. File paths:
    • Absolute paths: full paths starting with / (Unix) or drive letter (Windows)
    • Relative paths: paths relative to the current working directory
    • Relative paths with project_root: use the project_root parameter to specify a base directory

Using Relative Paths

When using relative file paths (like "examples/image.jpg"), you have two options:

  1. The path must be relative to the current working directory where the server is running
  2. Or, you can specify a project_root parameter:
# Example with relative path and project_root
result = await image_analysis(
    image="examples/image.jpg",
    project_root="/path/to/your/project",
    query="What is in this image?"
)

This is particularly useful in applications where the current working directory may not be predictable or when you want to reference files using paths relative to a specific directory.

Development

Setup Development Environment

# Clone the repository
git clone https://github.com/modelcontextprotocol/mcp-openvision.git
cd mcp-openvision

# Install development dependencies
pip install -e ".[dev]"

Code Formatting

This project uses Black for automatic code formatting. The formatting is enforced through GitHub Actions:

  • All code pushed to the repository is automatically formatted with Black
  • For pull requests from repository collaborators, Black formats the code and commits directly to the PR branch
  • For pull requests from forks, Black creates a new PR with the formatted code that can be merged into the original PR

You can also run Black locally to format your code before committing:

# Format all Python code in the src and tests directories
black src tests

Run Tests

pytest

Release Process

This project uses an automated release process:

  1. Update the version in pyproject.toml following Semantic Versioning principles
    • You can use the helper script: python scripts/bump_version.py [major|minor|patch]
  2. Update the CHANGELOG.md with details about the new version
    • The script also creates a template entry in CHANGELOG.md that you can fill in
  3. Commit and push these changes to the main branch
  4. The GitHub Actions workflow will:
    • Detect the version change
    • Automatically create a new GitHub release
    • Trigger the publishing workflow that publishes to PyPI

This automation helps maintain a consistent release process and ensures that every release is properly versioned and documented.

Support

If you find this project helpful, consider buying me a coffee to support ongoing development and maintenance.

Buy Me A Coffee

License

This project is licensed under the MIT License - see the LICENSE file for details.

Recommend Servers
TraeBuild with Free GPT-4.1 & Claude 3.7. Fully MCP-Ready.
WindsurfThe new purpose-built IDE to harness magic
Playwright McpPlaywright MCP server
BlenderBlenderMCP connects Blender to Claude AI through the Model Context Protocol (MCP), allowing Claude to directly interact with and control Blender. This integration enables prompt assisted 3D modeling, scene creation, and manipulation.
Baidu Map百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Howtocook Mcp基于Anduin2017 / HowToCook (程序员在家做饭指南)的mcp server,帮你推荐菜谱、规划膳食,解决“今天吃什么“的世纪难题; Based on Anduin2017/HowToCook (Programmer's Guide to Cooking at Home), MCP Server helps you recommend recipes, plan meals, and solve the century old problem of "what to eat today"
ChatWiseThe second fastest AI chatbot™
AiimagemultistyleA Model Context Protocol (MCP) server for image generation and manipulation using fal.ai's Stable Diffusion model.
CursorThe AI Code Editor
DeepChatYour AI Partner on Desktop
EdgeOne Pages MCPAn MCP service designed for deploying HTML content to EdgeOne Pages and obtaining an accessible public URL.
Amap Maps高德地图官方 MCP Server
Jina AI MCP ToolsA Model Context Protocol (MCP) server that integrates with Jina AI Search Foundation APIs.
TimeA Model Context Protocol server that provides time and timezone conversion capabilities. This server enables LLMs to get current time information and perform timezone conversions using IANA timezone names, with automatic system timezone detection.
MiniMax MCPOfficial MiniMax Model Context Protocol (MCP) server that enables interaction with powerful Text to Speech, image generation and video generation APIs.
Serper MCP ServerA Serper MCP Server
MCP AdvisorMCP Advisor & Installation - Use the right MCP server for your needs
Zhipu Web SearchZhipu Web Search MCP Server is a search engine specifically designed for large models. It integrates four search engines, allowing users to flexibly compare and switch between them. Building upon the web crawling and ranking capabilities of traditional search engines, it enhances intent recognition capabilities, returning results more suitable for large model processing (such as webpage titles, URLs, summaries, site names, site icons, etc.). This helps AI applications achieve "dynamic knowledge acquisition" and "precise scenario adaptation" capabilities.
Context7Context7 MCP Server -- Up-to-date code documentation for LLMs and AI code editors
Visual Studio Code - Open Source ("Code - OSS")Visual Studio Code
Tavily Mcp