- MCP Order Flow Server
MCP Order Flow Server
This is the mcp to fetch and get order flow information
Content
MCP Order Flow Server
A Fast MCP server that provides real-time order flow analysis for options trading decisions. This server consumes quote data from Redis and provides structured analysis through MCP tools.
🎯 Overview
This server analyzes order flow data to help LLM agents make informed options trading decisions by providing:
- Real-time momentum indicators: Bid/ask lifts, drops, and price movements
- Size dynamics: Volume patterns, large order detection, acceleration
- Pattern detection: Absorption, stacking, sweeps, momentum shifts
- Support/resistance levels: Significant price levels from order flow
- Market behavior flags: Simple YES/NO indicators for LLM interpretation
🏗️ Architecture
System Overview
[Data Broker] → Redis → [This Server] → MCP Tool → LLM Agent
↑ ↓
└─ Background Processing (1s) ←┘
Detailed Sequence Flow
sequenceDiagram
participant LLM as LLM Agent
participant MCP as MCP Server
participant Redis as Redis
participant Processor as Background Processor
Note over Processor,Redis: Background Processing (Every 1s)
loop Every Second
Processor->>Redis: Get quotes (10s, 60s, 300s)
Processor->>Processor: Calculate metrics & detect patterns
Processor->>Redis: Save metrics, patterns, levels
end
Note over LLM,Redis: Tool Request Flow
LLM->>MCP: analyze_order_flow("SPY", "5mins")
MCP->>Redis: Get quotes, metrics, patterns
Redis-->>MCP: Aggregated data
MCP->>MCP: Format XML response
MCP-->>LLM: Structured analysis
View complete sequence diagram →
🚀 Quick Start
Prerequisites
- Python 3.10+
- Redis server running
- mcp-trading-data-broker publishing quotes
Installation
# Clone repository
git clone https://github.com/yourusername/mcp-order-flow-server.git
cd mcp-order-flow-server
# Create virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dependencies
pip install -r requirements.txt
Running the Server
# Quick start with helper script
chmod +x dev_start.sh
./dev_start.sh
# Or run directly
python -m src.mcp_server
📊 MCP Tool Reference
analyze_order_flow
Analyzes order flow data for options trading decisions.
Example Request:*
result = await analyze_order_flow(
ticker="SPY",
history="5mins",
include_patterns=True
)
Example Response:
<order_flow_data ticker="SPY" timestamp="2025-01-15T10:30:45" current_price="450.27">
<current_quote>
<bid price="450.25" size="5000" />
<ask price="450.30" size="2000" />
<bid_ask_ratio>2.5</bid_ask_ratio>
</current_quote>
<momentum>
<last_10s>
<bid_price_change>0.08</bid_price_change>
<bid_lifts>3</bid_lifts>
</last_10s>
<last_60s>
<bid_lifts>39</bid_lifts>
<bid_drops>21</bid_drops>
</last_60s>
</momentum>
<behaviors>
<bid_stacking>YES</bid_stacking>
<momentum_building>YES</momentum_building>
</behaviors>
<detected_patterns>
<pattern>
<type>absorption</type>
<side>bid</side>
<strength>strong</strength>
</pattern>
</detected_patterns>
</order_flow_data>
🔍 Pattern Detection
Absorption Pattern
Detects large orders absorbing market flow at specific price levels.
- Trigger: Stable price with high volume (>8k avg size)
- Significance: Institutional accumulation/distribution
Stacking Pattern
Identifies building walls of orders on bid or ask.
- Trigger: Consecutive large orders (>5k) with increasing sizes
- Significance: Support/resistance building
Momentum Shift
Detects directional pressure changes.
- Trigger: 2:1 or greater lift/drop ratio
- Significance: Trend initiation or reversal
Sweep Detection
Identifies sudden large size changes.
- Trigger: >15k size change between consecutive quotes
- Significance: Aggressive execution, stop hunting
⚙️ Configuration
Environment Variables
# Redis Configuration
export REDIS_HOST=localhost
export REDIS_PORT=6379
export REDIS_DB=0
export REDIS_PASSWORD=
# Server Configuration
export LOG_LEVEL=INFO
export PROCESSOR_INTERVAL=1 # Processing frequency in seconds
Redis Data Structure
| Key Pattern | Type | Description | TTL |
|---|---|---|---|
orderflow:quotes:{ticker} | Sorted Set | Raw quotes | 3600s |
orderflow:metrics:{ticker}:{window} | Hash | Calculated metrics | 60-600s |
orderflow:patterns:{ticker} | Sorted Set | Detected patterns | 3600s |
orderflow:levels:{ticker}:{side} | Sorted Set | Price levels | 3600s |
🛠️ Development
Project Structure
src/
├── mcp_server.py # FastMCP server entry point
├── tools/
│ └── order_flow_tool.py # MCP tool implementation
├── processors/
│ ├── order_flow_processor.py # Main processing logic
│ ├── metrics_calculator.py # Momentum & size metrics
│ ├── pattern_detector.py # Pattern identification
│ └── behavior_analyzer.py # Market behavior flags
├── storage/
│ └── redis_client.py # Redis operations
└── formatters/
└── state_manager.py # XML response formatting
Adding New Patterns
- Add detection logic to
src/processors/pattern_detector.py:
def _detect_your_pattern(self, quotes: List[Dict]) -> Optional[Dict]:
# Pattern detection logic
return {
'type': 'your_pattern',
'timestamp': time.time() * 1000,
# Pattern-specific fields
}
- Update pattern detector to call your method
- Add XML formatting in state manager
🔗 Integration
Claude Desktop Configuration
{
"mcpServers": {
"order-flow": {
"command": "python",
"args": ["-m", "src.mcp_server"],
"cwd": "/path/to/mcp-order-flow-server",
"env": {
"REDIS_HOST": "localhost",
"REDIS_PORT": "6379"
}
}
}
}
Recommend Servers
TraeBuild with Free GPT-4.1 & Claude 3.7. Fully MCP-Ready.
Context7Context7 MCP Server -- Up-to-date code documentation for LLMs and AI code editors
Zhipu Web SearchZhipu Web Search MCP Server is a search engine specifically designed for large models. It integrates four search engines, allowing users to flexibly compare and switch between them. Building upon the web crawling and ranking capabilities of traditional search engines, it enhances intent recognition capabilities, returning results more suitable for large model processing (such as webpage titles, URLs, summaries, site names, site icons, etc.). This helps AI applications achieve "dynamic knowledge acquisition" and "precise scenario adaptation" capabilities.
Jina AI MCP ToolsA Model Context Protocol (MCP) server that integrates with Jina AI Search Foundation APIs.
BlenderBlenderMCP connects Blender to Claude AI through the Model Context Protocol (MCP), allowing Claude to directly interact with and control Blender. This integration enables prompt assisted 3D modeling, scene creation, and manipulation.
ChatWiseThe second fastest AI chatbot™
MCP AdvisorMCP Advisor & Installation - Use the right MCP server for your needs
WindsurfThe new purpose-built IDE to harness magic
AiimagemultistyleA Model Context Protocol (MCP) server for image generation and manipulation using fal.ai's Stable Diffusion model.
TimeA Model Context Protocol server that provides time and timezone conversion capabilities. This server enables LLMs to get current time information and perform timezone conversions using IANA timezone names, with automatic system timezone detection.
Howtocook Mcp基于Anduin2017 / HowToCook (程序员在家做饭指南)的mcp server,帮你推荐菜谱、规划膳食,解决“今天吃什么“的世纪难题;
Based on Anduin2017/HowToCook (Programmer's Guide to Cooking at Home), MCP Server helps you recommend recipes, plan meals, and solve the century old problem of "what to eat today"
DeepChatYour AI Partner on Desktop
Playwright McpPlaywright MCP server
EdgeOne Pages MCPAn MCP service designed for deploying HTML content to EdgeOne Pages and obtaining an accessible public URL.
CursorThe AI Code Editor
Visual Studio Code - Open Source ("Code - OSS")Visual Studio Code
Serper MCP ServerA Serper MCP Server
MiniMax MCPOfficial MiniMax Model Context Protocol (MCP) server that enables interaction with powerful Text to Speech, image generation and video generation APIs.
Amap Maps高德地图官方 MCP Server
Tavily Mcp
Baidu Map百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。