Sponsored by Deepsite.site

MCP Documentation Search Server

Created By
PicardRaphael9 months ago
🔍 FastMCP-powered documentation search engine that provides unified access to multiple framework docs (Next.js, Tailwind, Framer Motion, etc.) with intelligent name resolution and async processing.
Content

MCP Documentation Search Server

A powerful documentation search server built with FastMCP, enabling AI systems to intelligently search across multiple popular framework and library documentations. This tool ensures that AI models can quickly access and retrieve relevant information from various documentation sources using a unified interface.

🌟 Features

  • 📚 Multi-Library Support: Search documentation across multiple libraries:

  • 🔍 Intelligent Search

    • Smart name resolution for library variations
    • DuckDuckGo-powered search for accurate results
    • Site-specific search targeting
  • ⚡ Performance Features

    • Asynchronous processing
    • Efficient web request handling
    • Parallel content fetching
  • 🛡️ Robust Error Handling

    • Network timeout management
    • Invalid input validation
    • HTTP error handling
    • Request failure recovery

📋 Requirements

  • Python 3.8+
  • pip or uv package manager
  • Virtual environment (recommended)

🚀 Quick Start

  1. Clone the Repository
git clone <repository-url>
cd mcp-server
  1. Set Up Virtual Environment
python -m venv .venv
# On Windows:
.venv\Scripts\activate
# On Unix or MacOS:
source .venv/bin/activate
  1. Install Dependencies
pip install -r requirements.txt
  1. Run the Server
python main.py

💻 Usage

Basic Usage

from main import get_docs

# Search Framer Motion documentation
result = await get_docs(
    query="how to animate on scroll",
    library="framer-motion"
)

# Search Next.js documentation
result = await get_docs(
    query="how to use app router",
    library="next"
)

Library Name Variations

The system intelligently handles various library name formats:

# All these calls will work the same way
await get_docs(query="animations", library="framer")
await get_docs(query="animations", library="framermotion")
await get_docs(query="animations", library="framer-motion")
await get_docs(query="animations", library="motion")

🧪 Testing

The project includes a comprehensive test suite to ensure reliability and correctness. Tests are organized into three main categories:

Test Structure

  • Unit Tests: Test individual components in isolation

    • test_utils.py: Tests for library name normalization and URL retrieval
    • test_services.py: Tests for web search and content fetching services
  • Integration Tests: Test how components work together

    • test_main.py: Tests for the main API function get_docs

Running Tests

To run all tests:

python -m pytest

To run specific test modules:

python -m pytest tests/test_utils.py
python -m pytest tests/test_services.py
python -m pytest tests/test_main.py

To run tests with verbose output:

python -m pytest -v

Test Coverage

The tests cover:

  • ✅ Library name normalization and validation
  • ✅ URL retrieval for different libraries
  • ✅ Web search functionality
  • ✅ Content fetching and error handling
  • ✅ Documentation search integration
  • ✅ API input validation and error handling
  • ✅ Alias resolution for different library name formats

Asynchronous Testing

The project uses a custom run_async helper function to test asynchronous code in a synchronous test environment. This approach allows for testing async functions without requiring complex test setup.

🏗️ Project Structure

mcp-server/
├── main.py          # Entry point and FastMCP tool definition
├── config.py        # Configuration settings and constants
├── services.py      # Web search and content fetching services
├── utils.py         # Utility functions for library name handling
├── tests/           # Test suite
│   ├── test_utils.py    # Tests for utility functions
│   ├── test_services.py # Tests for web services
│   ├── test_main.py     # Tests for main API
│   └── conftest.py      # Pytest configuration
├── requirements.txt # Project dependencies
└── README.md        # Documentation

🔧 Configuration

Supported Libraries

To add a new library:

  1. Add the documentation URL in config.py:
DOCS_URLS = {
    "new-library": "https://docs.new-library.com",
    # ... existing entries
}
  1. Add common aliases:
LIBRARY_ALIASES = {
    "new-lib": "new-library",
    # ... existing entries
}

HTTP Settings

Modify in config.py:

HTTP_TIMEOUT = 30.0        # Timeout in seconds
MAX_SEARCH_RESULTS = 2     # Number of search results to fetch

🤝 Contributing

We welcome contributions! Here's how you can help:

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests for new functionality
  5. Ensure all tests pass
  6. Submit a pull request

Adding New Libraries

  1. Update DOCS_URLS in config.py
  2. Add relevant aliases in LIBRARY_ALIASES
  3. Test the integration
  4. Update documentation
  5. Submit a pull request

🐛 Troubleshooting

Common issues and solutions:

  • TimeoutError: Increase HTTP_TIMEOUT in config.py
  • No Results: Try different search terms or verify the library name
  • HTTP Errors: Check your internet connection and the documentation URL

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

  • FastMCP for the core functionality
  • DuckDuckGo for search capabilities
  • pytest for testing framework
  • All supported documentation providers
Recommend Servers
TraeBuild with Free GPT-4.1 & Claude 3.7. Fully MCP-Ready.
Context7Context7 MCP Server -- Up-to-date code documentation for LLMs and AI code editors
Jina AI MCP ToolsA Model Context Protocol (MCP) server that integrates with Jina AI Search Foundation APIs.
Playwright McpPlaywright MCP server
WindsurfThe new purpose-built IDE to harness magic
MiniMax MCPOfficial MiniMax Model Context Protocol (MCP) server that enables interaction with powerful Text to Speech, image generation and video generation APIs.
Serper MCP ServerA Serper MCP Server
Amap Maps高德地图官方 MCP Server
EdgeOne Pages MCPAn MCP service designed for deploying HTML content to EdgeOne Pages and obtaining an accessible public URL.
ChatWiseThe second fastest AI chatbot™
DeepChatYour AI Partner on Desktop
Visual Studio Code - Open Source ("Code - OSS")Visual Studio Code
BlenderBlenderMCP connects Blender to Claude AI through the Model Context Protocol (MCP), allowing Claude to directly interact with and control Blender. This integration enables prompt assisted 3D modeling, scene creation, and manipulation.
Zhipu Web SearchZhipu Web Search MCP Server is a search engine specifically designed for large models. It integrates four search engines, allowing users to flexibly compare and switch between them. Building upon the web crawling and ranking capabilities of traditional search engines, it enhances intent recognition capabilities, returning results more suitable for large model processing (such as webpage titles, URLs, summaries, site names, site icons, etc.). This helps AI applications achieve "dynamic knowledge acquisition" and "precise scenario adaptation" capabilities.
TimeA Model Context Protocol server that provides time and timezone conversion capabilities. This server enables LLMs to get current time information and perform timezone conversions using IANA timezone names, with automatic system timezone detection.
MCP AdvisorMCP Advisor & Installation - Use the right MCP server for your needs
Tavily Mcp
AiimagemultistyleA Model Context Protocol (MCP) server for image generation and manipulation using fal.ai's Stable Diffusion model.
Howtocook Mcp基于Anduin2017 / HowToCook (程序员在家做饭指南)的mcp server,帮你推荐菜谱、规划膳食,解决“今天吃什么“的世纪难题; Based on Anduin2017/HowToCook (Programmer's Guide to Cooking at Home), MCP Server helps you recommend recipes, plan meals, and solve the century old problem of "what to eat today"
CursorThe AI Code Editor
Baidu Map百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。