Sponsored by Deepsite.site

JSON Canvas MCP Server

Created By
Cam100011101019 months ago
Content

JSON Canvas MCP Server

A Model Context Protocol (MCP) server implementation that provides tools for working with JSON Canvas files according to the official specification. This server enables creating, modifying, and validating infinite canvas data structures.

Overview

The JSON Canvas MCP server provides a complete implementation of the JSON Canvas 1.0 specification, enabling:

  • Creation and manipulation of infinite canvas data
  • Support for all node types (text, file, link, group)
  • Edge connections with styling and labels
  • Validation against the specification
  • Configurable output paths

Components

Resources

The server exposes the following resources:

  • canvas://schema: JSON Schema for validating canvas files
  • canvas://examples: Example canvas files demonstrating different features
  • canvas://templates: Templates for creating new canvases

Tools

Node Operations

  • create_node

    • Create a new node of any supported type
    • Input:
      • type (string): Node type ("text", "file", "link", "group")
      • properties (object): Node-specific properties
        • Common: id, x, y, width, height, color
        • Type-specific: text, file, url, etc.
    • Returns: Created node object
  • update_node

    • Update an existing node's properties
    • Input:
      • id (string): Node ID to update
      • properties (object): Properties to update
    • Returns: Updated node object
  • delete_node

    • Remove a node and its connected edges
    • Input:
      • id (string): Node ID to delete
    • Returns: Success confirmation

Edge Operations

  • create_edge

    • Create a new edge between nodes
    • Input:
      • id (string): Unique edge identifier
      • fromNode (string): Source node ID
      • toNode (string): Target node ID
      • fromSide (optional string): Start side ("top", "right", "bottom", "left")
      • toSide (optional string): End side
      • color (optional string): Edge color
      • label (optional string): Edge label
    • Returns: Created edge object
  • update_edge

    • Update an existing edge's properties
    • Input:
      • id (string): Edge ID to update
      • properties (object): Properties to update
    • Returns: Updated edge object
  • delete_edge

    • Remove an edge
    • Input:
      • id (string): Edge ID to delete
    • Returns: Success confirmation

Canvas Operations

  • validate_canvas

    • Validate a canvas against the specification
    • Input:
      • canvas (object): Canvas data to validate
    • Returns: Validation results with any errors
  • export_canvas

    • Export canvas to different formats
    • Input:
      • format (string): Target format ("json", "svg", "png")
      • canvas (object): Canvas data to export
    • Returns: Exported canvas in requested format

Usage with Claude Desktop

Docker

Add this to your claude_desktop_config.json:

{
  "mcpServers": {
    "jsoncanvas": {
      "command": "docker",
      "args": [
        "run",
        "-i",
        "--rm",
        "-v",
        "canvas-data:/data",
        "mcp/jsoncanvas"
      ],
      "env": {
        "OUTPUT_PATH": "/data/output"
      }
    }
  }
}

UV

{
  "mcpServers": {
    "jsoncanvas": {
      "command": "uv",
      "args": [
        "--directory",
        "/path/to/jsoncanvas",
        "run",
        "mcp-server-jsoncanvas"
      ],
      "env": {
        "OUTPUT_PATH": "./output"
      }
    }
  }
}

Configuration

The server can be configured using environment variables:

  • OUTPUT_PATH: Directory where canvas files will be saved (default: "./output")
  • FORMAT: Default output format for canvas files (default: "json")

Building

Docker Build

docker build -t mcp/jsoncanvas .

Local Build

# Install uv if not already installed
curl -LsSf https://astral.sh/uv/install.sh | sh

# Create virtual environment and install dependencies
uv venv
source .venv/bin/activate  # On Windows: .venv\Scripts\activate
uv pip install -e .

# Run tests
pytest

Example Usage

Creating a Canvas

from jsoncanvas import Canvas, TextNode, Edge

# Create nodes
title = TextNode(
    id="title",
    x=100,
    y=100,
    width=400,
    height=100,
    text="# Hello Canvas\n\nThis is a demonstration.",
    color="#4285F4"
)

info = TextNode(
    id="info",
    x=600,
    y=100,
    width=300,
    height=100,
    text="More information here",
    color="2"  # Using preset color
)

# Create canvas
canvas = Canvas()
canvas.add_node(title)
canvas.add_node(info)

# Connect nodes
edge = Edge(
    id="edge1",
    from_node="title",
    to_node="info",
    from_side="right",
    to_side="left",
    label="Connection"
)
canvas.add_edge(edge)

# Save canvas
canvas.save("example.canvas")

License

This MCP server is licensed under the MIT License. This means you are free to use, modify, and distribute the software, subject to the terms and conditions of the MIT License. For more details, please see the LICENSE file in the project repository.

Recommend Servers
TraeBuild with Free GPT-4.1 & Claude 3.7. Fully MCP-Ready.
Serper MCP ServerA Serper MCP Server
EdgeOne Pages MCPAn MCP service designed for deploying HTML content to EdgeOne Pages and obtaining an accessible public URL.
CursorThe AI Code Editor
Visual Studio Code - Open Source ("Code - OSS")Visual Studio Code
Context7Context7 MCP Server -- Up-to-date code documentation for LLMs and AI code editors
Tavily Mcp
Howtocook Mcp基于Anduin2017 / HowToCook (程序员在家做饭指南)的mcp server,帮你推荐菜谱、规划膳食,解决“今天吃什么“的世纪难题; Based on Anduin2017/HowToCook (Programmer's Guide to Cooking at Home), MCP Server helps you recommend recipes, plan meals, and solve the century old problem of "what to eat today"
TimeA Model Context Protocol server that provides time and timezone conversion capabilities. This server enables LLMs to get current time information and perform timezone conversions using IANA timezone names, with automatic system timezone detection.
BlenderBlenderMCP connects Blender to Claude AI through the Model Context Protocol (MCP), allowing Claude to directly interact with and control Blender. This integration enables prompt assisted 3D modeling, scene creation, and manipulation.
Zhipu Web SearchZhipu Web Search MCP Server is a search engine specifically designed for large models. It integrates four search engines, allowing users to flexibly compare and switch between them. Building upon the web crawling and ranking capabilities of traditional search engines, it enhances intent recognition capabilities, returning results more suitable for large model processing (such as webpage titles, URLs, summaries, site names, site icons, etc.). This helps AI applications achieve "dynamic knowledge acquisition" and "precise scenario adaptation" capabilities.
AiimagemultistyleA Model Context Protocol (MCP) server for image generation and manipulation using fal.ai's Stable Diffusion model.
Jina AI MCP ToolsA Model Context Protocol (MCP) server that integrates with Jina AI Search Foundation APIs.
MiniMax MCPOfficial MiniMax Model Context Protocol (MCP) server that enables interaction with powerful Text to Speech, image generation and video generation APIs.
MCP AdvisorMCP Advisor & Installation - Use the right MCP server for your needs
WindsurfThe new purpose-built IDE to harness magic
DeepChatYour AI Partner on Desktop
Baidu Map百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
ChatWiseThe second fastest AI chatbot™
Playwright McpPlaywright MCP server
Amap Maps高德地图官方 MCP Server