Sponsored by Deepsite.site

MCP Task Manager Server

Created By
bsmi0218 months ago
A local Model Context Protocol (MCP) server providing backend tools for client-driven project and task management using a SQLite database.
Content

MCP Task Manager Server

MCP Task Manager Logo

A local Model Context Protocol (MCP) server providing backend tools for client-driven project and task management using a SQLite database.

Overview

This server acts as a persistent backend for local MCP clients (like AI agents or scripts) that need to manage structured task data within distinct projects. It handles data storage and provides a standardized set of tools for interaction, while the strategic workflow logic resides within the client.

Key Features:

  • Project-Based: Tasks are organized within distinct projects.
  • SQLite Persistence: Uses a local SQLite file (./data/taskmanager.db by default) for simple, self-contained data storage.
  • Client-Driven: Provides tools for clients; does not dictate workflow.
  • MCP Compliant: Adheres to the Model Context Protocol for tool definition and communication.
  • Task Management: Supports creating projects, adding tasks, listing/showing tasks, updating status, expanding tasks into subtasks, and identifying the next actionable task.
  • Import/Export: Allows exporting project data to JSON and importing from JSON to create new projects.

Implemented MCP Tools

The following tools are available for MCP clients:

  • createProject:
    • Description: Creates a new, empty project.
    • Params: projectName (string, optional, max 255)
    • Returns: { project_id: string }
  • addTask:
    • Description: Adds a new task to a project.
    • Params: project_id (string, required, UUID), description (string, required, 1-1024), dependencies (string[], optional, max 50), priority (enum 'high'|'medium'|'low', optional, default 'medium'), status (enum 'todo'|'in-progress'|'review'|'done', optional, default 'todo')
    • Returns: Full TaskData object of the created task.
  • listTasks:
    • Description: Lists tasks for a project, with optional filtering and subtask inclusion.
    • Params: project_id (string, required, UUID), status (enum 'todo'|'in-progress'|'review'|'done', optional), include_subtasks (boolean, optional, default false)
    • Returns: Array of TaskData or StructuredTaskData objects.
  • showTask:
    • Description: Retrieves full details for a specific task, including dependencies and direct subtasks.
    • Params: project_id (string, required, UUID), task_id (string, required)
    • Returns: FullTaskData object.
  • setTaskStatus:
    • Description: Updates the status of one or more tasks.
    • Params: project_id (string, required, UUID), task_ids (string[], required, 1-100), status (enum 'todo'|'in-progress'|'review'|'done', required)
    • Returns: { success: true, updated_count: number }
  • expandTask:
    • Description: Breaks a parent task into subtasks, optionally replacing existing ones.
    • Params: project_id (string, required, UUID), task_id (string, required), subtask_descriptions (string[], required, 1-20, each 1-512), force (boolean, optional, default false)
    • Returns: Updated parent FullTaskData object including new subtasks.
  • getNextTask:
    • Description: Identifies the next actionable task based on status ('todo'), dependencies ('done'), priority, and creation date.
    • Params: project_id (string, required, UUID)
    • Returns: FullTaskData object of the next task, or null if none are ready.
  • exportProject:
    • Description: Exports complete project data as a JSON string.
    • Params: project_id (string, required, UUID), format (enum 'json', optional, default 'json')
    • Returns: JSON string representing the project.
  • importProject:
    • Description: Creates a new project from an exported JSON string.
    • Params: project_data (string, required, JSON), new_project_name (string, optional, max 255)
    • Returns: { project_id: string } of the newly created project.
  • updateTask:
    • Description: Updates specific details (description, priority, dependencies) of an existing task.
    • Params: project_id (string, required, UUID), task_id (string, required, UUID), description (string, optional, 1-1024), priority (enum 'high'|'medium'|'low', optional), dependencies (string[], optional, max 50, replaces existing)
    • Returns: Updated FullTaskData object.
  • deleteTask:
    • Description: Deletes one or more tasks (and their subtasks/dependency links via cascade).
    • Params: project_id (string, required, UUID), task_ids (string[], required, 1-100)
    • Returns: { success: true, deleted_count: number }
  • deleteProject:
    • Description: Permanently deletes a project and ALL associated data. Use with caution!
    • Params: project_id (string, required, UUID)
    • Returns: { success: true }

(Note: Refer to the corresponding src/tools/*Params.ts files for detailed Zod schemas and parameter descriptions.)

Getting Started

  1. Prerequisites: Node.js (LTS recommended), npm.

  2. Install Dependencies:

    npm install
    
  3. Run in Development Mode: (Uses ts-node and nodemon for auto-reloading)

    npm run dev
    

    The server will connect via stdio. Logs (JSON format) will be printed to stderr. The SQLite database will be created/updated in ./data/taskmanager.db.

  4. Build for Production:

    npm run build
    
  5. Run Production Build:

    npm start
    

Configuration

  • Database Path: The location of the SQLite database file can be overridden by setting the DATABASE_PATH environment variable. The default is ./data/taskmanager.db.
  • Log Level: The logging level can be set using the LOG_LEVEL environment variable (e.g., debug, info, warn, error). The default is info.

Project Structure

  • /src: Source code.
    • /config: Configuration management.
    • /db: Database manager and schema (schema.sql).
    • /repositories: Data access layer (SQLite interaction).
    • /services: Core business logic.
    • /tools: MCP tool definitions (*Params.ts) and implementation (*Tool.ts).
    • /types: Shared TypeScript interfaces (currently minimal, mostly in repos/services).
    • /utils: Logging, custom errors, etc.
    • createServer.ts: Server instance creation.
    • server.ts: Main application entry point.
  • /dist: Compiled JavaScript output.
  • /docs: Project documentation (PRD, Feature Specs, RFC).
  • /data: Default location for the SQLite database file (created automatically).
  • tasks.md: Manual task tracking file for development.
  • Config files (package.json, tsconfig.json, .eslintrc.json, etc.)

Linting and Formatting

  • Lint: npm run lint
  • Format: npm run format

(Code is automatically linted/formatted on commit via Husky/lint-staged).

Recommend Servers
TraeBuild with Free GPT-4.1 & Claude 3.7. Fully MCP-Ready.
Baidu Map百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Serper MCP ServerA Serper MCP Server
MCP AdvisorMCP Advisor & Installation - Use the right MCP server for your needs
EdgeOne Pages MCPAn MCP service designed for deploying HTML content to EdgeOne Pages and obtaining an accessible public URL.
Jina AI MCP ToolsA Model Context Protocol (MCP) server that integrates with Jina AI Search Foundation APIs.
Tavily Mcp
BlenderBlenderMCP connects Blender to Claude AI through the Model Context Protocol (MCP), allowing Claude to directly interact with and control Blender. This integration enables prompt assisted 3D modeling, scene creation, and manipulation.
TimeA Model Context Protocol server that provides time and timezone conversion capabilities. This server enables LLMs to get current time information and perform timezone conversions using IANA timezone names, with automatic system timezone detection.
Visual Studio Code - Open Source ("Code - OSS")Visual Studio Code
WindsurfThe new purpose-built IDE to harness magic
Playwright McpPlaywright MCP server
CursorThe AI Code Editor
MiniMax MCPOfficial MiniMax Model Context Protocol (MCP) server that enables interaction with powerful Text to Speech, image generation and video generation APIs.
AiimagemultistyleA Model Context Protocol (MCP) server for image generation and manipulation using fal.ai's Stable Diffusion model.
Amap Maps高德地图官方 MCP Server
DeepChatYour AI Partner on Desktop
ChatWiseThe second fastest AI chatbot™
Howtocook Mcp基于Anduin2017 / HowToCook (程序员在家做饭指南)的mcp server,帮你推荐菜谱、规划膳食,解决“今天吃什么“的世纪难题; Based on Anduin2017/HowToCook (Programmer's Guide to Cooking at Home), MCP Server helps you recommend recipes, plan meals, and solve the century old problem of "what to eat today"
Context7Context7 MCP Server -- Up-to-date code documentation for LLMs and AI code editors
Zhipu Web SearchZhipu Web Search MCP Server is a search engine specifically designed for large models. It integrates four search engines, allowing users to flexibly compare and switch between them. Building upon the web crawling and ranking capabilities of traditional search engines, it enhances intent recognition capabilities, returning results more suitable for large model processing (such as webpage titles, URLs, summaries, site names, site icons, etc.). This helps AI applications achieve "dynamic knowledge acquisition" and "precise scenario adaptation" capabilities.