Sponsored by Deepsite.site

MCP Translation Server

Created By
KYBvWHxW10 months ago
High-performance Manchu-Chinese translation server implementing the Model Context Protocol (MCP)
Content

MCP Translation Server

License Python Docker

Overview

MCP Translation Server 是一个专门用于满-汉双向翻译的高性能机器翻译系统。它基于先进的语言学处理和深度学习技术,为低资源语言翻译提供全面的解决方案。

主要特性

1. 增强型形态分析

  • 🔍 完整的满语语言规则支持
  • 🎯 精确的元音和谐分析
  • 📊 智能词形变化预测
  • ✨ 自动错误检测和纠正

2. 高级翻译引擎

  • 🚀 多级翻译策略
  • 📚 智能语料库匹配
  • 🔄 形态分析集成
  • 📊 详细翻译元数据

3. 丰富的语言资源

  • 📖 完整的语言规则系统
  • 💾 扩展的平行语料库
  • 📚 优化的词典结构
  • 🔍 上下文感知分析

快速开始

1. 克隆仓库

git clone https://github.com/yourusername/mcp-translation-server.git
cd mcp-translation-server

2. 环境设置

# 创建虚拟环境
python -m venv venv

# 激活虚拟环境
source venv/bin/activate  # Linux/Mac
# 或
venv\Scripts\activate    # Windows

# 安装依赖
pip install -r requirements.txt

3. 配置

# 复制配置模板
cp config/config.example.json config/config.json

# 编辑配置文件
vim config/config.json  # 或使用其他编辑器

4. 运行演示

# 运行综合演示
python demo/comprehensive_demo.py

# 运行翻译服务器
python server.py

系统架构

核心组件

  1. 形态分析器 (enhanced_morphology.py)

    • 词形分析和生成
    • 元音和谐处理
    • 错误检测和纠正
  2. 翻译引擎 (enhanced_translation.py)

    • 多级翻译策略
    • 语料库匹配
    • 形态分析集成
  3. 语言资源

    • 语言规则 (manchu_rules.json)
    • 平行语料库 (parallel_corpus.json)
    • 词典系统 (dictionary.json)

API 文档

基本翻译

POST /api/v1/translate
Content-Type: application/json

{
    "text": "bi bithe arambi",
    "source_lang": "manchu",
    "target_lang": "chinese"
}

形态分析

POST /api/v1/analyze
Content-Type: application/json

{
    "text": "arambi",
    "type": "morphology"
}

贡献指南

  1. Fork 本仓库
  2. 创建特性分支 (git checkout -b feature/AmazingFeature)
  3. 提交更改 (git commit -m 'Add some AmazingFeature')
  4. 推送到分支 (git push origin feature/AmazingFeature)
  5. 开启 Pull Request

许可证

本项目采用 MIT 许可证。详见 LICENSE 文件。

致谢

  • 感谢所有为满语研究做出贡献的学者
  • 感谢开源社区的支持
  • 特别感谢为本项目提供语料和建议的专家们

Copy example configuration file

cp config.example.py config.py

Edit config.py with your settings

vim config.py # or use your preferred editor

Set required environment variables

export MCP_SECRET_KEY="your-secure-random-string" # Required export MCP_API_TOKEN="your-api-token" # Required export MCP_REDIS_PASSWORD="your-redis-password" # Optional export MCP_SMTP_PASSWORD="your-smtp-password" # Optional


4. Run the server:
```bash
python server.py

Configuration

Environment Variables

The following environment variables are supported:

VariableRequiredDescriptionExample
MCP_SECRET_KEYYesSecret key for session encryptionopenssl rand -hex 32
MCP_API_TOKENYesAPI authentication tokenopenssl rand -hex 32
MCP_REDIS_PASSWORDNoRedis server passwordyour-redis-password
MCP_SMTP_PASSWORDNoSMTP server passwordyour-smtp-password

Configuration File

The server can be configured by copying config.example.py to config.py and editing the values. The configuration file supports:

  • API settings (host, port, debug mode)
  • Security settings (secret key, API token)
  • Rate limiting rules
  • Cache configuration
  • Model settings
  • Resource paths
  • Monitoring options
  • Logging configuration
  • Email notifications

Important Security Notes:

  1. Never commit config.py to version control
  2. Use strong, random values for SECRET_KEY and API_TOKEN
  3. Store sensitive credentials in environment variables
  4. Keep your .env file secure and never commit it
  5. Regularly rotate security credentials

Documentation

Architecture

Core Components

  1. Translation Engine

    • MT5-based neural translation
    • Context-aware processing
    • Batch processing support
  2. Language Resources

    • Comprehensive dictionary
    • Grammar rule engine
    • Morphological analyzer
    • Parallel corpus
  3. System Features

    • Efficient caching
    • Performance monitoring
    • Resource management
    • Error handling

Performance

  • Average translation latency: < 1s
  • 95th percentile latency: < 2s
  • Concurrent request handling: 100+ req/s
  • Cache hit rate: > 80%

Monitoring

  • Real-time metrics via Prometheus
  • Visualizations through Grafana
  • Automated alerting system
  • Performance tracking

Contributing

We welcome contributions! Please see our Contributing Guide for details.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

  • Research paper authors
  • Open-source community
  • Contributors and maintainers

Contact

Recommend Servers
TraeBuild with Free GPT-4.1 & Claude 3.7. Fully MCP-Ready.
EdgeOne Pages MCPAn MCP service designed for deploying HTML content to EdgeOne Pages and obtaining an accessible public URL.
TimeA Model Context Protocol server that provides time and timezone conversion capabilities. This server enables LLMs to get current time information and perform timezone conversions using IANA timezone names, with automatic system timezone detection.
MiniMax MCPOfficial MiniMax Model Context Protocol (MCP) server that enables interaction with powerful Text to Speech, image generation and video generation APIs.
Tavily Mcp
BlenderBlenderMCP connects Blender to Claude AI through the Model Context Protocol (MCP), allowing Claude to directly interact with and control Blender. This integration enables prompt assisted 3D modeling, scene creation, and manipulation.
Baidu Map百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Howtocook Mcp基于Anduin2017 / HowToCook (程序员在家做饭指南)的mcp server,帮你推荐菜谱、规划膳食,解决“今天吃什么“的世纪难题; Based on Anduin2017/HowToCook (Programmer's Guide to Cooking at Home), MCP Server helps you recommend recipes, plan meals, and solve the century old problem of "what to eat today"
AiimagemultistyleA Model Context Protocol (MCP) server for image generation and manipulation using fal.ai's Stable Diffusion model.
WindsurfThe new purpose-built IDE to harness magic
Amap Maps高德地图官方 MCP Server
Jina AI MCP ToolsA Model Context Protocol (MCP) server that integrates with Jina AI Search Foundation APIs.
CursorThe AI Code Editor
Serper MCP ServerA Serper MCP Server
ChatWiseThe second fastest AI chatbot™
DeepChatYour AI Partner on Desktop
Zhipu Web SearchZhipu Web Search MCP Server is a search engine specifically designed for large models. It integrates four search engines, allowing users to flexibly compare and switch between them. Building upon the web crawling and ranking capabilities of traditional search engines, it enhances intent recognition capabilities, returning results more suitable for large model processing (such as webpage titles, URLs, summaries, site names, site icons, etc.). This helps AI applications achieve "dynamic knowledge acquisition" and "precise scenario adaptation" capabilities.
Visual Studio Code - Open Source ("Code - OSS")Visual Studio Code
MCP AdvisorMCP Advisor & Installation - Use the right MCP server for your needs
Context7Context7 MCP Server -- Up-to-date code documentation for LLMs and AI code editors
Playwright McpPlaywright MCP server