Sponsored by Deepsite.site

Candidate MCP Server Library

Created By
jhgaylor8 months ago
A Model Context Protocol (MCP) server library that gives LLMs access to information about a candidate.
Content

Candidate MCP Server Library

A Model Context Protocol (MCP) server that gives LLMs access to information about a candidate.

Overview

Important: This server is intended to be used as a library to be integrated into other applications, not as a standalone service. The provided startup methods are for demonstration and testing purposes only.

Resources

This MCP server provides the following resources:

  • candidate-info://resume-text: Resume content as text
  • candidate-info://resume-url: URL to the resume
  • candidate-info://linkedin-url: LinkedIn profile URL
  • candidate-info://github-url: GitHub profile URL
  • candidate-info://website-url: Personal website URL
  • candidate-info://website-text: Content from the personal website

Tools

This MCP server also provides tools that return the same candidate information:

  • get_resume_text: Returns the candidate's resume content as text
  • get_resume_url: Returns the URL to the candidate's resume
  • get_linkedin_url: Returns the candidate's LinkedIn profile URL
  • get_github_url: Returns the candidate's GitHub profile URL
  • get_website_url: Returns the candidate's personal website URL
  • get_website_text: Returns the content from the candidate's personal website
  • contact_candidate: Sends an email to the candidate (requires Mailgun configuration)

Usage

npm install @jhgaylor/candidate-mcp-server

Library Usage

This package is designed to be imported and used within your own applications.

Stdio

Starting the process is a breeze with stdio. The interesting part is providing the candidate configuration.

Where you source the candidate configuration is entirely up to you. Maybe you hard code it. Maybe you take a JSONResume url when you start the process. It's up to you!

import { createServer } from '@jhgaylor/candidate-mcp-server';
import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js";

// Configure your server
const serverConfig = { 
  name: "MyCandidateServer", 
  version: "1.0.0",
  mailgunApiKey: process.env.MAILGUN_API_KEY,
  mailgunDomain: process.env.MAILGUN_DOMAIN
};
const candidateConfig = { 
  name: "John Doe",
  email: "john.doe@example.com", // Required for the contact_candidate tool
  resumeUrl: "https://example.com/resume.pdf",
  // other candidate properties
};

// Create server instance
const server = createServer(serverConfig, candidateConfig);

// Connect with your preferred transport
await server.connect(new StdioServerTransport());
// or integrate with your existing HTTP server

StreamableHttp

Using the example code provided by the typescript sdk we can bind this mcp server to an express server.

import express from 'express';
import { Request, Response } from 'express';
import { createServer } from '@jhgaylor/candidate-mcp-server';
import { StreamableHTTPServerTransport } from "@modelcontextprotocol/sdk/server/streamablehttp.js";

// Configure your server
const serverConfig = { 
  name: "MyCandidateServer", 
  version: "1.0.0",
  mailgunApiKey: process.env.MAILGUN_API_KEY,
  mailgunDomain: process.env.MAILGUN_DOMAIN,
  contactEmail: "john.doe@example.com",
};
const candidateConfig = { 
  name: "John Doe",
  resumeUrl: "https://example.com/resume.pdf",
  // other candidate properties
};

// Factory function to create a new server instance for each request
const getServer = () => createServer(serverConfig, candidateConfig);

const app = express();
app.use(express.json());

app.post('/mcp', async (req: Request, res: Response) => {
  // In stateless mode, create a new instance of transport and server for each request
  // to ensure complete isolation. A single instance would cause request ID collisions
  // when multiple clients connect concurrently.
  
  try {
    const server = getServer(); 
    const transport = new StreamableHTTPServerTransport({
      sessionIdGenerator: undefined,
    });
    res.on('close', () => {
      console.log('Request closed');
      transport.close();
      server.close();
    });
    await server.connect(transport);
    await transport.handleRequest(req, res, req.body);
  } catch (error) {
    console.error('Error handling MCP request:', error);
    if (!res.headersSent) {
      res.status(500).json({
        jsonrpc: '2.0',
        error: {
          code: -32603,
          message: 'Internal server error',
        },
        id: null,
      });
    }
  }
});

app.get('/mcp', async (req: Request, res: Response) => {
  console.log('Received GET MCP request');
  res.writeHead(405).end(JSON.stringify({
    jsonrpc: "2.0",
    error: {
      code: -32000,
      message: "Method not allowed."
    },
    id: null
  }));
});

app.delete('/mcp', async (req: Request, res: Response) => {
  console.log('Received DELETE MCP request');
  res.writeHead(405).end(JSON.stringify({
    jsonrpc: "2.0",
    error: {
      code: -32000,
      message: "Method not allowed."
    },
    id: null
  }));
});

// Start the server
const PORT = process.env.PORT || 3000;
app.listen(PORT, () => {
  console.log(`MCP Stateless Streamable HTTP Server listening on port ${PORT}`);
});

Express

Instead of writing the binding between express and the mcp transport yourself, you can use express-mcp-handler to do it for you.

npm install express-mcp-handler

import express from 'express';
import { statelessHandler } from 'express-mcp-handler';
import { createServer } from './server';

// You can configure the server factory to include Mailgun settings
const createServerWithConfig = () => {
  const serverConfig = { 
    name: "MyCandidateServer", 
    version: "1.0.0",
    mailgunApiKey: process.env.MAILGUN_API_KEY,
    mailgunDomain: process.env.MAILGUN_DOMAIN,
    contactEmail: "john.doe@example.com",
  };
  const candidateConfig = { 
    name: "John Doe",
    resumeUrl: "https://example.com/resume.pdf",
    // other candidate properties
  };
  
  return createServer(serverConfig, candidateConfig);
};

// Configure the stateless handler
const handler = statelessHandler(createServerWithConfig);

// Create Express app
const app = express();
app.use(express.json());

// Mount the handler (stateless only needs POST)
app.post('/mcp', handler);

// Start the server
const PORT = process.env.PORT || 3002;
app.listen(PORT, () => {
  console.log(`Stateless MCP server running on port ${PORT}`);
});

Development

# Install dependencies
npm install

# Build the project
npm run build

# Run in development mode with auto-restart
npm run dev

Demo / Debug Startup via stdio

# Start with STDIO (demo only)
npm start

When running with STDIO, you can interact with the server by sending MCP messages as single-line JSON objects:

# Example of sending an initialize message via STDIO
echo '{"jsonrpc": "2.0","id": 1,"method": "initialize","params": {"protocolVersion": "2024-11-05","capabilities": {"roots": {"listChanged": true},"sampling": {}},"clientInfo": {"name": "ExampleClient","version": "1.0.0"}}}' | node dist/index.js --stdio

# List resources
echo '{"jsonrpc": "2.0","id": 2,"method": "resources/list","params": {}}' | node dist/index.js --stdio

# Access a resource
echo '{"jsonrpc": "2.0","id": 3,"method": "resources/read","params": {"uri": "candidate-info://resume-text"}}' | node dist/index.js --stdio

# List Tools
echo '{"jsonrpc": "2.0","id": 2,"method": "tools/list","params": {}}' | node dist/index.js --stdio

# Call a tool
echo '{"jsonrpc": "2.0","id": 4,"method": "tools/call","params": {"name": "get_resume_text", "args": {}}}' | node dist/index.js --stdio

# Send an email to the candidate
echo '{"jsonrpc": "2.0","id": 5,"method": "tools/call","params": {"name": "contact_candidate", "args": {"subject": "Hello from AI!", "message": "This is a test email sent via the MCP server.", "reply_address": "recruiter@company.com"}}}' | node dist/index.js --stdio

Each message must be on a single line with no line breaks within the JSON object.

Features

  • Library-first design for integration into other applications
  • Modular resource system for extending with custom candidate information
  • TypeScript for type safety and better developer experience
  • Implements the full Model Context Protocol specification
  • Supports multiple transport types (STDIO, HTTP, Streamable HTTP)
  • Minimal dependencies

Server Structure

src/
  ├── index.ts                # Main package entry point
  ├── server.ts               # MCP server factory with configuration
  ├── config.ts               # Configuration type definitions
  └── resources/              # Modular resource definitions
      └── index.ts            # Resource factory and implementation

MCP Protocol

This library implements the Model Context Protocol (MCP), a standardized way for LLMs to interact with external data and functionality. When integrated into your application, it exposes a stateless API that responds to JSON-RPC requests.

API Usage

Once integrated into your application, clients can interact with the MCP server by sending JSON-RPC requests. Here are examples of requests that your application would handle after integrating this library:

Initialize

curl -X POST http://your-application-url/mcp \
  -H "Content-Type: application/json" \
  -H "Accept: application/json" \
  -H "Accept: text/event-stream" \
  -d '{
    "jsonrpc": "2.0",
    "id": 1,
    "method": "initialize",
    "params": {
      "protocolVersion": "2024-11-05",
      "capabilities": {
        "roots": {
          "listChanged": true
        },
        "sampling": {}
      },
      "clientInfo": {
        "name": "ExampleClient",
        "version": "1.0.0"
      }
    }
  }'

Access Candidate Resources

curl -X POST http://your-application-url/mcp \
  -H "Content-Type: application/json" \
  -H "Accept: application/json" \
  -H "Accept: text/event-stream" \
  -d '{
    "jsonrpc": "2.0",
    "method": "resources/read",
    "params": {
      "uri": "candidate-info://resume-text"
    },
    "id": 2
  }'

Extending the Library

This library is designed to be extended with custom resources, tools, and prompts. Here's how to add your own resources:

import { McpServer, Resource } from '@jhgaylor/candidate-mcp-server';

// Create your custom resource class
class CustomCandidateResource extends Resource {
  constructor(candidateConfig) {
    super(
      `${candidateConfig.name} Custom Data`, 
      "candidate-info://custom-data", 
      async () => {
        return {
          contents: [
            { 
              uri: "candidate-info://custom-data", 
              mimeType: "text/plain", 
              text: "Your custom candidate data here"
            }
          ]
        };
      }
    );
  }
}

// Create server with standard configuration
const server = createServer(serverConfig, candidateConfig);

// Add your custom resource
const customResource = new CustomCandidateResource(candidateConfig);
customResource.bind(server);

// Connect with preferred transport
// ...

Adding Custom Tools

You can also extend the library with custom tools:

import { McpServer } from '@modelcontextprotocol/sdk/server/mcp.js';
import { z } from 'zod';
import { createServer } from '@jhgaylor/candidate-mcp-server';

// Create server with standard configuration
const server = createServer(serverConfig, candidateConfig);

// Add a custom tool
server.tool(
  'get_candidate_skills',
  'Returns a list of the candidate skills',
  {},
  async (_args, _extra) => {
    return {
      content: [
        { 
          type: "text", 
          text: "JavaScript, TypeScript, React, Node.js, MCP Protocol" 
        }
      ]
    };
  }
);

// Connect with preferred transport
// ...

Requirements

  • Node.js 20+
  • npm or yarn

License

MIT

Publishing to npm

Log in to npm if you haven't already:

npm login

Publish the package to npm (will run your prepublishOnly build):

npm publish

To bump, tag, and push a new version:

npm version patch    # or minor, major
git push origin main --tags
Recommend Servers
TraeBuild with Free GPT-4.1 & Claude 3.7. Fully MCP-Ready.
WindsurfThe new purpose-built IDE to harness magic
EdgeOne Pages MCPAn MCP service designed for deploying HTML content to EdgeOne Pages and obtaining an accessible public URL.
Jina AI MCP ToolsA Model Context Protocol (MCP) server that integrates with Jina AI Search Foundation APIs.
Serper MCP ServerA Serper MCP Server
ChatWiseThe second fastest AI chatbot™
MCP AdvisorMCP Advisor & Installation - Use the right MCP server for your needs
Visual Studio Code - Open Source ("Code - OSS")Visual Studio Code
CursorThe AI Code Editor
MiniMax MCPOfficial MiniMax Model Context Protocol (MCP) server that enables interaction with powerful Text to Speech, image generation and video generation APIs.
BlenderBlenderMCP connects Blender to Claude AI through the Model Context Protocol (MCP), allowing Claude to directly interact with and control Blender. This integration enables prompt assisted 3D modeling, scene creation, and manipulation.
Playwright McpPlaywright MCP server
Howtocook Mcp基于Anduin2017 / HowToCook (程序员在家做饭指南)的mcp server,帮你推荐菜谱、规划膳食,解决“今天吃什么“的世纪难题; Based on Anduin2017/HowToCook (Programmer's Guide to Cooking at Home), MCP Server helps you recommend recipes, plan meals, and solve the century old problem of "what to eat today"
TimeA Model Context Protocol server that provides time and timezone conversion capabilities. This server enables LLMs to get current time information and perform timezone conversions using IANA timezone names, with automatic system timezone detection.
Baidu Map百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
DeepChatYour AI Partner on Desktop
Zhipu Web SearchZhipu Web Search MCP Server is a search engine specifically designed for large models. It integrates four search engines, allowing users to flexibly compare and switch between them. Building upon the web crawling and ranking capabilities of traditional search engines, it enhances intent recognition capabilities, returning results more suitable for large model processing (such as webpage titles, URLs, summaries, site names, site icons, etc.). This helps AI applications achieve "dynamic knowledge acquisition" and "precise scenario adaptation" capabilities.
AiimagemultistyleA Model Context Protocol (MCP) server for image generation and manipulation using fal.ai's Stable Diffusion model.
Context7Context7 MCP Server -- Up-to-date code documentation for LLMs and AI code editors
Amap Maps高德地图官方 MCP Server
Tavily Mcp