Sponsored by Deepsite.site

Office Supplies Inventory NANDA Service using MCP Server + NANDA Registry + NANDA host client

Created By
izzyfondu8 months ago
Content

Office Supplies Inventory NANDA Service using MCP Server + NANDA Registry + NANDA host client

Create a NANDA service using Model Context Protocol (MCP) server code that provides information about office supplies inventory. This service allows AI assistants to query and retrieve information about office supplies using the MCP standard. You will use cloud hosted server and a web based NANDA host client. No need to install a local server.

You can deploy a consumer facing web-app for any standard inventory using the same framework.

Overview

This project implements a NANDA service using MCP server code that serves office inventory data from a CSV file. It provides tools that allow AI assistants to:

  • Get a list of all available items in the inventory
  • Retrieve detailed information about specific items by name

Prerequisites

  • Python 3.9 or higher
  • Dependencies listed in requirements.txt

Files in this Repository

  • officesupply.py: The main server implementation
  • inventory.csv: CSV file containing the office supply inventory data
  • build.sh: Script for setting up the environment
  • run.sh: Script for running the server
  • requirements.txt: List of Python dependencies

Quick Start

Local Setup

  1. Clone this repository:

    git clone https://github.com/aidecentralized/nanda-servers.git
    cd office-supplies-shop-server
    
  2. Choose one of the environment setup options below:

Option A: Using Python venv

  1. Create a Python virtual environment:

    python -m venv venv
    
  2. Activate the virtual environment:

    • On Linux/macOS:
      source venv/bin/activate
      
    • On Windows:
      venv\Scripts\activate
      
  3. Install dependencies:

    pip install -r requirements.txt
    

Option B: Using Conda

  1. Create a new conda environment:

    conda create --name inventory_env python=3.11
    
  2. Activate the conda environment:

    conda activate inventory_env
    
  3. Install dependencies:

    pip install -r requirements.txt
    

Running the Server Locally to Test

After setting up your environment using either option above:

  1. Run the server:

    python officesupply.py
    
  2. The server will be available at: http://localhost:8080

Testing with MCP Inspector

  1. Install the MCP Inspector:

    npx @modelcontextprotocol/inspector
    
  2. Open the URL provided by the inspector in your browser

  3. Connect using SSE transport type

  4. Enter your server URL with /sse at the end (e.g., http://localhost:8080/sse)

  5. Test the available tools:

    • get_items: Lists all item names in the inventory
    • get_item_info: Retrieves details about a specific item

CSV Data Format

The server expects an inventory.csv file with at least the following column:

  • item_name: The name of the inventory item

Additional columns will be included in the item details returned by get_item_info.

Within this purview, you can edit the CSV file for your requirements, and the MCP server should work for your CSV file as well.

Deployment

Preparing for Cloud Deployment

  1. Make sure your repository includes:

    • All code files
    • requirements.txt
    • build.sh and run.sh scripts
  2. Set executable permissions on the shell scripts:

    chmod +x build.sh run.sh
    

    For Windows, run

    wsl chmod +x build.sh run.sh
    

Create AWS account

Deploying to AWS AppRunner

  1. Create AWS account

  2. Add your credit card for billing

  3. Go to AWS AppRunner (https://console.aws.amazon.com/apprunner)

  4. Log in (if you’re not already)

  5. Once you're in the App Runner dashboard, you’ll see a blue “Create service” button near the top right of the page. Click that.

  6. Create a new service from your source code repository

  7. Configure the service:

    • Python 3.11 runtime
    • Build command: ./build.sh
    • Run command: ./run.sh
    • Port: 8080
  8. Deploy and wait for completion

  9. Test the public endpoint with MCP Inspector

Registering on NANDA Registry

  1. Go to NANDA Registry
  2. Login or create an account
  3. Click "Register a new server"
  4. Fill in the details:
    • Server name
    • Description
    • Public endpoint URL (without /sse)
    • Tags and categories
  5. Register your server

Usage in NANDA Host, a Browser based Client

  1. Visit nanda.mit.edu
  2. Go to the NANDA host
  3. Add your Anthropic API key
  4. Find your MCP server in the registry
  5. Add it to your host
  6. Test by asking questions that use your server's functionality

Troubleshooting

  • Ensure your CSV file is properly formatted
  • Test the server locally before deploying
  • Verify your public endpoint works with MCP Inspector before registering
  • Check the logs on AWS if deployment fails

Additional Resources

Check out this video tutorial for a walkthrough of setting up and using the MCP server: MCP Server Tutorial

Acknowledgments

Based on the NANDA Servers repository. Follow ProjectNanda at https://nanda.mit.edu

Recommend Servers
TraeBuild with Free GPT-4.1 & Claude 3.7. Fully MCP-Ready.
MCP AdvisorMCP Advisor & Installation - Use the right MCP server for your needs
BlenderBlenderMCP connects Blender to Claude AI through the Model Context Protocol (MCP), allowing Claude to directly interact with and control Blender. This integration enables prompt assisted 3D modeling, scene creation, and manipulation.
EdgeOne Pages MCPAn MCP service designed for deploying HTML content to EdgeOne Pages and obtaining an accessible public URL.
Jina AI MCP ToolsA Model Context Protocol (MCP) server that integrates with Jina AI Search Foundation APIs.
DeepChatYour AI Partner on Desktop
Baidu Map百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright McpPlaywright MCP server
TimeA Model Context Protocol server that provides time and timezone conversion capabilities. This server enables LLMs to get current time information and perform timezone conversions using IANA timezone names, with automatic system timezone detection.
WindsurfThe new purpose-built IDE to harness magic
Tavily Mcp
AiimagemultistyleA Model Context Protocol (MCP) server for image generation and manipulation using fal.ai's Stable Diffusion model.
Serper MCP ServerA Serper MCP Server
MiniMax MCPOfficial MiniMax Model Context Protocol (MCP) server that enables interaction with powerful Text to Speech, image generation and video generation APIs.
Visual Studio Code - Open Source ("Code - OSS")Visual Studio Code
Howtocook Mcp基于Anduin2017 / HowToCook (程序员在家做饭指南)的mcp server,帮你推荐菜谱、规划膳食,解决“今天吃什么“的世纪难题; Based on Anduin2017/HowToCook (Programmer's Guide to Cooking at Home), MCP Server helps you recommend recipes, plan meals, and solve the century old problem of "what to eat today"
ChatWiseThe second fastest AI chatbot™
CursorThe AI Code Editor
Amap Maps高德地图官方 MCP Server
Context7Context7 MCP Server -- Up-to-date code documentation for LLMs and AI code editors
Zhipu Web SearchZhipu Web Search MCP Server is a search engine specifically designed for large models. It integrates four search engines, allowing users to flexibly compare and switch between them. Building upon the web crawling and ranking capabilities of traditional search engines, it enhances intent recognition capabilities, returning results more suitable for large model processing (such as webpage titles, URLs, summaries, site names, site icons, etc.). This helps AI applications achieve "dynamic knowledge acquisition" and "precise scenario adaptation" capabilities.