Sponsored by Deepsite.site

Oopsbot

Created By
OopsBot-AI5 months ago
The OopsBot MCP Server is a Model Context Protocol (MCP) implementation that provides AI agents with comprehensive test case generation and management capabilities. Transform your product requirements into comprehensive test cases using AI-powered automation.
Content

OopsBot MCP Server

Overview

The OopsBot MCP Server is a Model Context Protocol (MCP) implementation that provides AI agents with comprehensive test case generation and management capabilities. Transform your product requirements into comprehensive test cases using AI-powered automation.

Key Features

  • 🤖 AI-Powered Test Generation: Generate comprehensive test cases from product requirements and user stories
  • 📄 Document Processing: Upload and process various document formats (PDF, DOCX, TXT, JSON, MD)
  • 🔍 Semantic Search: RAG-powered document retrieval with vector embeddings
  • 📊 Project Management: Organize test cases and documents by projects
  • 🔐 Secure Authentication: Enterprise-grade security with user isolation
  • ☁️ Cloud Storage: Scalable content management
  • 🔄 Real-time Streaming: Live test case generation with progress tracking

Architecture

┌─────────────────┐    ┌──────────────────┐    ┌─────────────────┐
│   AI Agent      │───▶│   OopsBot MCP    │───▶│   Backend       │
│   (Client)      │    │   Server         │    │   Services      │
└─────────────────┘    └──────────────────┘    └─────────────────┘
                       ┌──────────────────┐    ┌─────────────────┐
                       │   Cloud Storage  │    │   AI Services   │
                       │   (Test Cases)   │    │   (Documents)   │
                       └──────────────────┘    └─────────────────┘

Available Tools

1. Project Management

list_user_projects

Lists all projects associated with the authenticated user.

Returns:

{
  "projects": [
    {
      "project_id": "uuid-string",
      "name": "Project Name",
      "created_at": "2024-01-01T00:00:00Z"
    }
  ],
  "total": 1,
  "user_id": "user@example.com"
}

create_project

Creates a new project to organize documents and test cases.

Parameters:

  • name (string): Unique project name for the user

Example:

{
  "name": "E-commerce Login Flow"
}

2. Document Management

upload_document_to_rag

Uploads documents from the model context to the RAG service for processing.

Parameters:

  • filename (string): File name with extension
  • filecontent (string): File content from the model's context
  • topic (string, optional): Document category (default: "general")
  • project_id (string, optional): Project ID (default: "default")

Example:

{
  "filename": "login_requirements.pdf",
  "filecontent": "User authentication requirements...",
  "topic": "authentication",
  "project_id": "project-uuid"
}

3. Test Case Generation

generate_testcase_titles

Generates test case titles by starting a new active session.

Parameters:

  • project_id (string): Project ID (not name)
  • query (string): User's request for test case generation

Example:

{
  "project_id": "project-uuid",
  "query": "Generate test cases for user login functionality"
}

Returns:

{
  "project_id": "project-uuid",
  "session_id": "user@example.com_12345",
  "titles": [
    "Valid login with correct credentials",
    "Invalid login with wrong password",
    "Login with empty fields"
  ],
  "total_titles": 3
}

generate_testcases_from_titles

Generates full, detailed test cases from selected titles.

Parameters:

  • project_id (string): Project ID
  • session_id (string): Session ID from generate_testcase_titles
  • selected_titles (array): List of 1-indexed title numbers

Example:

{
  "project_id": "project-uuid",
  "session_id": "user@example.com_12345",
  "selected_titles": [1, 2, 3]
}

4. Test Case Retrieval

list_current_session_test_titles

Lists test case titles for the current active session.

Parameters:

  • project_id (string): Project ID
  • session_id (string, optional): Session ID (uses active session if not specified)
  • skip (integer, optional): Pagination offset (default: 0)
  • limit (integer, optional): Maximum results (default: 50)

get_generated_testcases

Retrieves all generated test cases for a project.

Parameters:

  • project_id (string): Project ID

Returns:

{
  "success": true,
  "project_id": "project-uuid",
  "testcases": [
    {
      "testcase_id": "tc_12345",
      "project_id": "project-uuid",
      "user_id": "user@example.com",
      "content": "Detailed test case content..."
    }
  ],
  "count": 1
}

Authentication

The OopsBot MCP Server uses secure token-based authentication.

Getting Access

  1. Sign up at app.oopsbot.com
  2. Generate your MCP API token from the dashboard
  3. Use the token in your IDE or client application

Authentication Format

Authorization: Bearer <your_api_token>

IDE Integration

Supported IDEs

Visual Studio Code

  1. Install the MCP extension
  2. Add OopsBot MCP server configuration:
{
  "mcpServers": {
    "oopsbot": {
      "command": "npx",
      "args": ["@oopsbot/mcp-server"],
      "env": {
        "OOPSBOT_API_TOKEN": "your_token_here"
      }
    }
  }
}

Cursor

  1. Open Cursor settings
  2. Navigate to MCP servers
  3. Add OopsBot configuration:
{
  "oopsbot": {
    "serverUrl": "https://mcp.oopsbot.com",
    "apiToken": "your_token_here"
  }
}

Claude Desktop

  1. Edit claude_desktop_config.json:
{
  "mcpServers": {
    "oopsbot": {
      "command": "node",
      "args": ["/path/to/oopsbot-mcp/server.js"],
      "env": {
        "OOPSBOT_API_TOKEN": "your_token_here"
      }
    }
  }
}

JetBrains IDEs (IntelliJ, PyCharm, WebStorm)

  1. Install MCP plugin from marketplace
  2. Configure in Settings > Tools > MCP:
    • Server URL: https://mcp.oopsbot.com
    • API Token: your_token_here

Neovim

require('mcp').setup({
  servers = {
    oopsbot = {
      cmd = {'node', '/path/to/oopsbot-mcp/server.js'},
      env = {
        OOPSBOT_API_TOKEN = 'your_token_here'
      }
    }
  }
})

Emacs

(use-package mcp-mode
  :config
  (add-to-list 'mcp-servers
               '(oopsbot
                 :command ("node" "/path/to/oopsbot-mcp/server.js")
                 :env (("OOPSBOT_API_TOKEN" . "your_token_here")))))

Configuration

SettingDescriptionRequired
OOPSBOT_API_TOKENYour API token from oopsbot.comYes
OOPSBOT_SERVER_URLServer endpointNo (defaults to production)
OOPSBOT_PROJECT_IDDefault project IDNo (defaults to "default")

Client Integration

Direct API Integration

Python

import requests

headers = {
    "Authorization": "Bearer your_api_token",
    "Content-Type": "application/json"
}

# Generate test case titles
response = requests.post(
    "https://api.oopsbot.com/mcp/tools/generate_testcase_titles",
    headers=headers,
    json={
        "project_id": "default",
        "query": "Test cases for user authentication"
    }
)

JavaScript/Node.js

const response = await fetch('https://api.oopsbot.com/mcp/tools/list_user_projects', {
  method: 'POST',
  headers: {
    'Authorization': 'Bearer your_api_token',
    'Content-Type': 'application/json'
  }
});

const projects = await response.json();

cURL

curl -X POST https://api.oopsbot.com/mcp/tools/generate_testcase_titles \
  -H "Authorization: Bearer your_api_token" \
  -H "Content-Type: application/json" \
  -d '{"project_id": "default", "query": "Login test cases"}'

Workflow Examples

Complete Test Generation Workflow

  1. Create/Select Project

    # List existing projects
    projects = await client.call_tool("list_user_projects")
    
    # Or create new project
    project = await client.call_tool("create_project", {
        "name": "E-commerce Testing"
    })
    
  2. Upload Requirements Document

    result = await client.call_tool("upload_document_to_rag", {
        "filename": "requirements.pdf",
        "filecontent": "Product requirements content...",
        "topic": "authentication",
        "project_id": project["project"]["_id"]
    })
    
  3. Generate Test Case Titles

    titles = await client.call_tool("generate_testcase_titles", {
        "project_id": project["project"]["_id"],
        "query": "Generate comprehensive test cases for user login"
    })
    
  4. Generate Full Test Cases

    testcases = await client.call_tool("generate_testcases_from_titles", {
        "project_id": project["project"]["_id"],
        "session_id": titles["session_id"],
        "selected_titles": [1, 2, 3]  # Select desired titles
    })
    
  5. Retrieve Generated Test Cases

    all_testcases = await client.call_tool("get_generated_testcases", {
        "project_id": project["project"]["_id"]
    })
    

Error Handling

Common Error Responses

{
  "error": "Authentication token not found",
  "success": false
}
{
  "error": "Project 'ProjectName' already exists",
  "success": false
}
{
  "error": "No active session found for project_id=default",
  "success": false
}

Best Practices

  1. Always check authentication before making requests
  2. Use project IDs, not names for API calls
  3. Handle session management properly in multi-step workflows
  4. Implement retry logic for network failures
  5. Validate responses before processing results

Rate Limits & Quotas

  • Document Upload: 50MB max file size
  • Test Generation: Token-based consumption
  • API Calls: Standard rate limiting applies
  • Concurrent Sessions: One active session per user

Security Considerations

  • JWT Tokens: Use secure secrets and proper expiration
  • User Isolation: All data is scoped to authenticated users
  • Transport Security: HTTPS recommended for production
  • Token Storage: Store tokens securely, never in plain text
  • Access Control: Users can only access their own projects and data

Monitoring & Logging

The server provides comprehensive logging for:

  • Authentication events
  • Tool execution
  • File uploads
  • Error conditions
  • Performance metrics

Log levels: DEBUG, INFO, WARNING, ERROR, CRITICAL

Support & Troubleshooting

Common Issues

  1. Authentication Failures: Verify your API token is valid
  2. Rate Limits: Check your plan limits at oopsbot.com
  3. Upload Failures: Ensure file size is under 50MB
  4. Generation Errors: Verify documents are properly uploaded

Getting Help

Pricing

  • Free Tier: 15 test cases/day

View detailed pricing

Version Information

  • MCP Protocol: 2024-11-05
  • Server Version: 1.0.0
  • API Version: v1

Get started at oopsbot.comDocumentationSupport

Recommend Servers
TraeBuild with Free GPT-4.1 & Claude 3.7. Fully MCP-Ready.
EdgeOne Pages MCPAn MCP service designed for deploying HTML content to EdgeOne Pages and obtaining an accessible public URL.
CursorThe AI Code Editor
Baidu Map百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Howtocook Mcp基于Anduin2017 / HowToCook (程序员在家做饭指南)的mcp server,帮你推荐菜谱、规划膳食,解决“今天吃什么“的世纪难题; Based on Anduin2017/HowToCook (Programmer's Guide to Cooking at Home), MCP Server helps you recommend recipes, plan meals, and solve the century old problem of "what to eat today"
Visual Studio Code - Open Source ("Code - OSS")Visual Studio Code
TimeA Model Context Protocol server that provides time and timezone conversion capabilities. This server enables LLMs to get current time information and perform timezone conversions using IANA timezone names, with automatic system timezone detection.
Y GuiA web-based graphical interface for AI chat interactions with support for multiple AI models and MCP (Model Context Protocol) servers.
Zhipu Web SearchZhipu Web Search MCP Server is a search engine specifically designed for large models. It integrates four search engines, allowing users to flexibly compare and switch between them. Building upon the web crawling and ranking capabilities of traditional search engines, it enhances intent recognition capabilities, returning results more suitable for large model processing (such as webpage titles, URLs, summaries, site names, site icons, etc.). This helps AI applications achieve "dynamic knowledge acquisition" and "precise scenario adaptation" capabilities.
Playwright McpPlaywright MCP server
Tavily Mcp
Serper MCP ServerA Serper MCP Server
BlenderBlenderMCP connects Blender to Claude AI through the Model Context Protocol (MCP), allowing Claude to directly interact with and control Blender. This integration enables prompt assisted 3D modeling, scene creation, and manipulation.
AiimagemultistyleA Model Context Protocol (MCP) server for image generation and manipulation using fal.ai's Stable Diffusion model.
Jina AI MCP ToolsA Model Context Protocol (MCP) server that integrates with Jina AI Search Foundation APIs.
Amap Maps高德地图官方 MCP Server
ChatWiseThe second fastest AI chatbot™
DeepChatYour AI Partner on Desktop
MiniMax MCPOfficial MiniMax Model Context Protocol (MCP) server that enables interaction with powerful Text to Speech, image generation and video generation APIs.
MCP AdvisorMCP Advisor & Installation - Use the right MCP server for your needs
WindsurfThe new purpose-built IDE to harness magic