- Promptheus
Promptheus
Promptheus
Refine and optimize prompts for LLMs
Quick Start
pip install promptheus
# Interactive session
promptheus
# Single prompt
promptheus "Write a technical blog post"
# Skip clarifying questions
promptheus -s "Explain Kubernetes"
# Use web UI
promptheus web
What is Promptheus?
Promptheus analyzes your prompts and refines them with:
- Adaptive questioning: Smart detection of what information you need to provide
- Multi-provider support: Works with Google, OpenAI, Anthropic, Groq, Qwen, and more
- Interactive refinement: Iteratively improve outputs through natural conversation
- Session history: Automatically track and reuse past prompts
- CLI and Web UI: Use from terminal or browser
Supported Providers
| Provider | Models | Setup |
|---|---|---|
| Google Gemini | gemini-2.0-flash, gemini-1.5-pro | API Key |
| Anthropic Claude | claude-3-5-sonnet, claude-3-opus | Console |
| OpenAI | gpt-4o, gpt-4-turbo | API Key |
| Groq | llama-3.3-70b, mixtral-8x7b | Console |
| Alibaba Qwen | qwen-max, qwen-plus | DashScope |
| Zhipu GLM | glm-4-plus, glm-4-air | Console |
| OpenRouter | openrouter/auto (auto-routing) | Dashboard |
OpenRouter integration in Promptheus is optimized around the openrouter/auto routing model:
- Model listing is intentionally minimal: Promptheus does not expose your full OpenRouter account catalog.
- You can still specify a concrete model manually with
OPENROUTER_MODELor--modelif your key has access.
Core Features
🧠 Adaptive Task Detection Automatically detects whether your task needs refinement or direct optimization
⚡ Interactive Refinement Ask targeted questions to elicit requirements and improve outputs
📝 Pipeline Integration Works seamlessly in Unix pipelines and shell scripts
🔄 Session Management Track, load, and reuse past prompts automatically
📊 Telemetry & Analytics Anonymous usage and performance metrics tracking for insights (local storage only, can be disabled)
🌐 Web Interface Beautiful UI for interactive prompt refinement and history management
Configuration
Create a .env file with at least one provider API key:
GOOGLE_API_KEY=your_key_here
ANTHROPIC_API_KEY=your_key_here
OPENAI_API_KEY=your_key_here
Or run the interactive setup:
promptheus auth
Examples
Content Generation
promptheus "Write a blog post about async programming"
# System asks: audience, tone, length, key topics
# Generates refined prompt with all specifications
Code Analysis
promptheus -s "Review this function for security issues"
# Skips questions, applies direct enhancement
Interactive Session
promptheus
/set provider anthropic
/set model claude-3-5-sonnet
# Process multiple prompts, switch providers/models with /commands
Pipeline Integration
echo "Create a REST API schema" | promptheus | jq '.refined_prompt'
cat prompts.txt | while read line; do promptheus "$line"; done
Testing & Examples: See sample_prompts.md for test prompts demonstrating adaptive task detection (analysis vs generation).
Telemetry & Analytics
# View telemetry summary (anonymous metrics about usage and performance)
promptheus telemetry summary
# Disable telemetry if desired
export PROMPTHEUS_TELEMETRY_ENABLED=0
# Customize history storage location
export PROMPTHEUS_HISTORY_DIR=~/.custom_promptheus
MCP Server
Promptheus includes a Model Context Protocol (MCP) server that exposes prompt refinement capabilities as standardized tools for integration with MCP-compatible clients.
What the MCP Server Does
The Promptheus MCP server provides:
- Prompt refinement with Q&A: Intelligent prompt optimization through adaptive questioning
- Prompt tweaking: Surgical modifications to existing prompts
- Model/provider inspection: Discovery and validation of available AI providers
- Environment validation: Configuration checking and connectivity testing
Starting the MCP Server
# Start the MCP server
promptheus mcp
# Or run directly with Python
python -m promptheus.mcp_server
Prerequisites:
- MCP package installed:
pip install mcp(included in requirements.txt) - At least one provider API key configured (see Configuration)
Available MCP Tools
refine_prompt
Intelligent prompt refinement with optional clarification questions.
Inputs:
prompt(required): The initial prompt to refineanswers(optional): Dictionary mapping question IDs to answers{q0: "answer", q1: "answer"}answer_mapping(optional): Maps question IDs to original question textprovider(optional): Override provider (e.g., "google", "openai")model(optional): Override model name
Response Types:
{"type": "refined", "prompt": "...", "next_action": "..."}: Success with refined prompt{"type": "clarification_needed", "questions_for_ask_user_question": [...], "answer_mapping": {...}}: Questions needed{"type": "error", "error_type": "...", "message": "..."}: Error occurred
tweak_prompt
Apply targeted modifications to existing prompts.
Inputs:
prompt(required): Current prompt to modifymodification(required): Description of changes (e.g., "make it shorter")provider,model(optional): Provider/model overrides
Returns:
{"type": "refined", "prompt": "..."}: Modified prompt
list_models
Discover available models from configured providers.
Inputs:
providers(optional): List of provider names to querylimit(optional): Max models per provider (default: 20)include_nontext(optional): Include vision/embedding models
Returns:
{"type": "success", "providers": {"google": {"available": true, "models": [...]}}}
list_providers
Check provider configuration status.
Returns:
{"type": "success", "providers": {"google": {"configured": true, "model": "..."}}}
validate_environment
Test environment configuration and API connectivity.
Inputs:
providers(optional): Specific providers to validatetest_connection(optional): Test actual API connectivity
Returns:
{"type": "success", "validation": {"google": {"configured": true, "connection_test": "passed"}}}
Prompt Refinement Workflow with Q&A
The MCP server supports a structured clarification workflow for optimal prompt refinement:
Step 1: Initial Refinement Request
{
"tool": "refine_prompt",
"arguments": {
"prompt": "Write a blog post about machine learning"
}
}
Step 2: Handle Clarification Response
{
"type": "clarification_needed",
"task_type": "generation",
"message": "To refine this prompt effectively, I need to ask...",
"questions_for_ask_user_question": [
{
"question": "Who is your target audience?",
"header": "Q1",
"multiSelect": false,
"options": [
{"label": "Technical professionals", "description": "Technical professionals"},
{"label": "Business executives", "description": "Business executives"}
]
}
],
"answer_mapping": {
"q0": "Who is your target audience?"
}
}
Step 3: Collect User Answers
Use your MCP client's AskUserQuestion tool with the provided questions, then map answers to question IDs.
Step 4: Final Refinement with Answers
{
"tool": "refine_prompt",
"arguments": {
"prompt": "Write a blog post about machine learning",
"answers": {"q0": "Technical professionals"},
"answer_mapping": {"q0": "Who is your target audience?"}
}
}
Response:
{
"type": "refined",
"prompt": "Write a comprehensive technical blog post about machine learning fundamentals targeted at software engineers and technical professionals. Include practical code examples and architectural patterns...",
"next_action": "This refined prompt is now ready to use. If the user asked you to execute/run the prompt, use this refined prompt directly with your own capabilities..."
}
AskUser Integration Contract
The MCP server operates in two modes:
Interactive Mode (when AskUserQuestion is available):
- Automatically asks clarification questions via injected AskUserQuestion function
- Returns refined prompt immediately after collecting answers
- Seamless user experience within supported clients
Structured Mode (fallback for all clients):
- Returns
clarification_neededresponse with formatted questions - Client responsible for calling AskUserQuestion tool
- Answers mapped back via
answer_mappingdictionary
Question Format:
Each question in questions_for_ask_user_question includes:
question: The question text to displayheader: Short identifier (Q1, Q2, etc.)multiSelect: Boolean for multi-select optionsoptions: Array of{label, description}for radio/checkbox questions
Answer Mapping:
- Question IDs follow pattern:
q0,q1,q2, etc. - Answers dictionary uses these IDs as keys:
{"q0": "answer", "q1": "answer"} answer_mappingpreserves original question text for provider context
Troubleshooting MCP
MCP Package Not Installed
Error: The 'mcp' package is not installed. Please install it with 'pip install mcp'.
Fix: pip install mcp or install Promptheus with dev dependencies: pip install -e .[dev]
Missing Provider API Keys
{
"type": "error",
"error_type": "ConfigurationError",
"message": "No provider configured. Please set API keys in environment."
}
Diagnosis: Use list_providers or validate_environment tools to check configuration status
Provider Misconfiguration
{
"type": "success",
"providers": {
"google": {"configured": false, "error": "GOOGLE_API_KEY not found"},
"openai": {"configured": true, "model": "gpt-4o"}
}
}
Fix: Set missing API keys in .env file or environment variables
Connection Test Failures
{
"type": "success",
"validation": {
"google": {
"configured": true,
"connection_test": "failed: Authentication error"
}
}
}
Fix: Verify API keys are valid and have necessary permissions
Full Documentation
Quick reference: promptheus --help
Comprehensive guides:
- 📖 Installation & Setup
- 🚀 Usage Guide
- 🔧 Configuration
- ⌨️ CLI Reference
- 🌐 Web UI Guide
- 🔌 Provider Setup
Development
git clone https://github.com/abhichandra21/Promptheus.git
cd Promptheus
pip install -e ".[dev]"
pytest -q
See CLAUDE.md for detailed development guidance.
License
MIT License - see LICENSE for details
Contributing
Contributions welcome! Please see our development guide for contribution guidelines.
Questions? Open an issue | Live demo: promptheus web
Server Config
{
"mcpServers": {
"promptheus": {
"type": "stdio",
"command": "~/Promptheus/venv/bin/python",
"args": [
"-m",
"promptheus.main",
"mcp"
],
"env": {
"ANTHROPIC_API_KEY": "API-KEY"
}
}
}
}