Sponsored by Deepsite.site

Memory MCP Server

Created By
evangstava year ago
Content

Memory MCP Server

A Model Context Protocol (MCP) server that provides knowledge graph functionality for managing entities, relations, and observations in memory, with strict validation rules to maintain data consistency.

Installation

Install the server in Claude Desktop:

mcp install main.py -v MEMORY_FILE_PATH=/path/to/memory.jsonl

Data Validation Rules

Entity Names

  • Must start with a lowercase letter
  • Can contain lowercase letters, numbers, and hyphens
  • Maximum length of 100 characters
  • Must be unique within the graph
  • Example valid names: python-project, meeting-notes-2024, user-john

Entity Types

The following entity types are supported:

  • person: Human entities
  • concept: Abstract ideas or principles
  • project: Work initiatives or tasks
  • document: Any form of documentation
  • tool: Software tools or utilities
  • organization: Companies or groups
  • location: Physical or virtual places
  • event: Time-bound occurrences

Observations

  • Non-empty strings
  • Maximum length of 500 characters
  • Must be unique per entity
  • Should be factual and objective statements
  • Include timestamp when relevant

Relations

The following relation types are supported:

  • knows: Person to person connection
  • contains: Parent/child relationship
  • uses: Entity utilizing another entity
  • created: Authorship/creation relationship
  • belongs-to: Membership/ownership
  • depends-on: Dependency relationship
  • related-to: Generic relationship

Additional relation rules:

  • Both source and target entities must exist
  • Self-referential relations not allowed
  • No circular dependencies allowed
  • Must use predefined relation types

Usage

The server provides tools for managing a knowledge graph:

Get Entity

result = await session.call_tool("get_entity", {
    "entity_name": "example"
})
if not result.success:
    if result.error_type == "NOT_FOUND":
        print(f"Entity not found: {result.error}")
    elif result.error_type == "VALIDATION_ERROR":
        print(f"Invalid input: {result.error}")
    else:
        print(f"Error: {result.error}")
else:
    entity = result.data
    print(f"Found entity: {entity}")

Get Graph

result = await session.call_tool("get_graph", {})
if result.success:
    graph = result.data
    print(f"Graph data: {graph}")
else:
    print(f"Error retrieving graph: {result.error}")

Create Entities

# Valid entity creation
entities = [
    Entity(
        name="python-project",  # Lowercase with hyphens
        entityType="project",   # Must be a valid type
        observations=["Started development on 2024-01-29"]
    ),
    Entity(
        name="john-doe",
        entityType="person",
        observations=["Software engineer", "Joined team in 2024"]
    )
]
result = await session.call_tool("create_entities", {
    "entities": entities
})
if not result.success:
    if result.error_type == "VALIDATION_ERROR":
        print(f"Invalid entity data: {result.error}")
    else:
        print(f"Error creating entities: {result.error}")

Add Observation

# Valid observation
result = await session.call_tool("add_observation", {
    "entity": "python-project",
    "observation": "Completed initial prototype"  # Must be unique for entity
})
if not result.success:
    if result.error_type == "NOT_FOUND":
        print(f"Entity not found: {result.error}")
    elif result.error_type == "VALIDATION_ERROR":
        print(f"Invalid observation: {result.error}")
    else:
        print(f"Error adding observation: {result.error}")

Create Relation

# Valid relation
result = await session.call_tool("create_relation", {
    "from_entity": "john-doe",
    "to_entity": "python-project",
    "relation_type": "created"  # Must be a valid type
})
if not result.success:
    if result.error_type == "NOT_FOUND":
        print(f"Entity not found: {result.error}")
    elif result.error_type == "VALIDATION_ERROR":
        print(f"Invalid relation data: {result.error}")
    else:
        print(f"Error creating relation: {result.error}")

Search Memory

result = await session.call_tool("search_memory", {
    "query": "most recent workout"  # Supports natural language queries
})
if result.success:
    if result.error_type == "NO_RESULTS":
        print(f"No results found: {result.error}")
    else:
        results = result.data
        print(f"Search results: {results}")
else:
    print(f"Error searching memory: {result.error}")

The search functionality supports:

  • Temporal queries (e.g., "most recent", "last", "latest")
  • Activity queries (e.g., "workout", "exercise")
  • General entity searches
  • Fuzzy matching with 80% similarity threshold
  • Weighted search across:
    • Entity names (weight: 1.0)
    • Entity types (weight: 0.8)
    • Observations (weight: 0.6)

Delete Entities

result = await session.call_tool("delete_entities", {
    "names": ["python-project", "john-doe"]
})
if not result.success:
    if result.error_type == "NOT_FOUND":
        print(f"Entity not found: {result.error}")
    else:
        print(f"Error deleting entities: {result.error}")

Delete Relation

result = await session.call_tool("delete_relation", {
    "from_entity": "john-doe",
    "to_entity": "python-project"
})
if not result.success:
    if result.error_type == "NOT_FOUND":
        print(f"Entity not found: {result.error}")
    else:
        print(f"Error deleting relation: {result.error}")

Flush Memory

result = await session.call_tool("flush_memory", {})
if not result.success:
    print(f"Error flushing memory: {result.error}")

Error Types

The server uses the following error types:

  • NOT_FOUND: Entity or resource not found
  • VALIDATION_ERROR: Invalid input data
  • INTERNAL_ERROR: Server-side error
  • ALREADY_EXISTS: Resource already exists
  • INVALID_RELATION: Invalid relation between entities

Response Models

All tools return typed responses using these models:

EntityResponse

class EntityResponse(BaseModel):
    success: bool
    data: Optional[Dict[str, Any]] = None
    error: Optional[str] = None
    error_type: Optional[str] = None

GraphResponse

class GraphResponse(BaseModel):
    success: bool
    data: Optional[Dict[str, Any]] = None
    error: Optional[str] = None
    error_type: Optional[str] = None

OperationResponse

class OperationResponse(BaseModel):
    success: bool
    error: Optional[str] = None
    error_type: Optional[str] = None

Development

Running Tests

pytest tests/

Adding New Features

  1. Update validation rules in validation.py
  2. Add tests in tests/test_validation.py
  3. Implement changes in knowledge_graph_manager.py
Recommend Servers
TraeBuild with Free GPT-4.1 & Claude 3.7. Fully MCP-Ready.
AiimagemultistyleA Model Context Protocol (MCP) server for image generation and manipulation using fal.ai's Stable Diffusion model.
ChatWiseThe second fastest AI chatbot™
BlenderBlenderMCP connects Blender to Claude AI through the Model Context Protocol (MCP), allowing Claude to directly interact with and control Blender. This integration enables prompt assisted 3D modeling, scene creation, and manipulation.
Visual Studio Code - Open Source ("Code - OSS")Visual Studio Code
Y GuiA web-based graphical interface for AI chat interactions with support for multiple AI models and MCP (Model Context Protocol) servers.
TimeA Model Context Protocol server that provides time and timezone conversion capabilities. This server enables LLMs to get current time information and perform timezone conversions using IANA timezone names, with automatic system timezone detection.
MiniMax MCPOfficial MiniMax Model Context Protocol (MCP) server that enables interaction with powerful Text to Speech, image generation and video generation APIs.
EdgeOne Pages MCPAn MCP service designed for deploying HTML content to EdgeOne Pages and obtaining an accessible public URL.
Serper MCP ServerA Serper MCP Server
WindsurfThe new purpose-built IDE to harness magic
Playwright McpPlaywright MCP server
DeepChatYour AI Partner on Desktop
Baidu Map百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Amap Maps高德地图官方 MCP Server
Zhipu Web SearchZhipu Web Search MCP Server is a search engine specifically designed for large models. It integrates four search engines, allowing users to flexibly compare and switch between them. Building upon the web crawling and ranking capabilities of traditional search engines, it enhances intent recognition capabilities, returning results more suitable for large model processing (such as webpage titles, URLs, summaries, site names, site icons, etc.). This helps AI applications achieve "dynamic knowledge acquisition" and "precise scenario adaptation" capabilities.
Tavily Mcp
Howtocook Mcp基于Anduin2017 / HowToCook (程序员在家做饭指南)的mcp server,帮你推荐菜谱、规划膳食,解决“今天吃什么“的世纪难题; Based on Anduin2017/HowToCook (Programmer's Guide to Cooking at Home), MCP Server helps you recommend recipes, plan meals, and solve the century old problem of "what to eat today"
MCP AdvisorMCP Advisor & Installation - Use the right MCP server for your needs
CursorThe AI Code Editor
Jina AI MCP ToolsA Model Context Protocol (MCP) server that integrates with Jina AI Search Foundation APIs.