- SDOF MCP - Structured Decision Optimization Framework
SDOF MCP - Structured Decision Optimization Framework
Structured Decision Optimization Framework (SDOF) MCP Server - Next-generation knowledge management with 5-phase optimization workflow
Content
SDOF MCP - Structured Decision Optimization Framework
Next-generation knowledge management system with 5-phase optimization workflow
The Structured Decision Optimization Framework (SDOF) Knowledge Base is a Model Context Protocol (MCP) server that provides persistent memory and context management for AI systems through a structured 5-phase optimization workflow.
🚀 Quick Start
Prerequisites
- Node.js 18+
- OpenAI API Key (for embeddings)
- MCP-compatible client (Claude Desktop, etc.)
Installation
# Clone the repository
git clone https://github.com/your-username/sdof-mcp.git
cd sdof-mcp
# Install dependencies
npm install
npm run build
# Configure environment
cp .env.example .env
# Edit .env with your OpenAI API key
# Start the server
npm start
📖 Documentation
- Installation Guide - Complete setup instructions
- Migration Guide - Migration from ConPort
- API Documentation - MCP tool reference
- Setup Guide - Detailed configuration
✨ Features
🎯 5-Phase Optimization Workflow
- Phase 1: Exploration - Solution discovery and brainstorming
- Phase 2: Analysis - Detailed evaluation and optimization
- Phase 3: Implementation - Code development and testing
- Phase 4: Evaluation - Performance and quality assessment
- Phase 5: Integration - Learning consolidation and documentation
🧠 Advanced Knowledge Management
- Vector Embeddings: Semantic search with OpenAI embeddings
- Persistent Storage: MongoDB/SQLite with vector indexing
- Prompt Caching: Optimized for LLM efficiency
- Schema Validation: Structured content types
- Multi-Interface: Both MCP tools and HTTP API
🔧 Content Types
text- General documentation and notescode- Code implementations and examplesdecision- Decision records and rationaleanalysis- Analysis results and findingssolution- Solution descriptions and designsevaluation- Evaluation reports and metricsintegration- Integration documentation and guides
🛠️ MCP Tools
Primary Tool: store_sdof_plan
Store structured knowledge with metadata:
{
plan_content: string; // Markdown content
metadata: {
planTitle: string; // Descriptive title
planType: ContentType; // Content type (text, code, decision, etc.)
tags?: string[]; // Categorization tags
phase?: string; // SDOF phase (1-5)
cache_hint?: boolean; // Mark for prompt caching
}
}
Example Usage
// Store a decision record
{
"server_name": "sdof_knowledge_base",
"tool_name": "store_sdof_plan",
"arguments": {
"plan_content": "# Database Selection\n\nChose MongoDB for vector storage due to...",
"metadata": {
"planTitle": "Database Architecture Decision",
"planType": "decision",
"tags": ["database", "architecture"],
"phase": "2",
"cache_hint": true
}
}
}
🏗️ Architecture
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ AI Clients │───▶│ SDOF Knowledge │───▶│ Database │
│ (Claude, etc.) │ │ Base MCP │ │ (MongoDB/ │
└─────────────────┘ │ Server │ │ SQLite) │
└──────────────────┘ └─────────────────┘
│
▼
┌──────────────────┐
│ HTTP API │
│ (Port 3000) │
└──────────────────┘
🔧 Configuration
MCP Client Configuration
Add to your MCP client configuration:
{
"mcpServers": {
"sdof_knowledge_base": {
"type": "stdio",
"command": "node",
"args": ["path/to/sdof-mcp/build/index.js"],
"env": {
"OPENAI_API_KEY": "your-openai-api-key"
},
"alwaysAllow": ["store_sdof_plan"]
}
}
}
Environment Variables
# Required
OPENAI_API_KEY=sk-proj-your-openai-api-key
# Optional
EMBEDDING_MODEL=text-embedding-3-small
HTTP_PORT=3000
MONGODB_URI=mongodb://localhost:27017/sdof
🧪 Testing
# Run tests
npm test
# Run system validation
node build/test-unified-system.js
# Performance benchmarks
npm run test:performance
📊 Performance
Target metrics:
- Query Response: <500ms average
- Embedding Generation: <2s per request
- Vector Search: <100ms for similarity calculations
- Database Operations: <50ms for CRUD operations
🤝 Contributing
- Fork the repository
- Create a feature branch:
git checkout -b feature/amazing-feature - Make changes to TypeScript files in
src/ - Run tests:
npm test - Build:
npm run build - Commit changes:
git commit -m 'Add amazing feature' - Push to branch:
git push origin feature/amazing-feature - Open a Pull Request
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🆘 Support
- Documentation: Check the docs/ directory
- Issues: GitHub Issues
- Installation Help: See SDOF_INSTALLATION_GUIDE.md
🎉 Success Indicators
You know the system is working correctly when:
- ✅ No authentication errors in logs
- ✅
store_sdof_plantool responds successfully - ✅ Knowledge entries are stored and retrievable
- ✅ Query performance meets targets (<500ms)
- ✅ Test suite passes completely
Built with ❤️ for the AI community
Recommend Servers
TraeBuild with Free GPT-4.1 & Claude 3.7. Fully MCP-Ready.
WindsurfThe new purpose-built IDE to harness magic
DeepChatYour AI Partner on Desktop
MCP AdvisorMCP Advisor & Installation - Use the right MCP server for your needs
ChatWiseThe second fastest AI chatbot™
Playwright McpPlaywright MCP server
EdgeOne Pages MCPAn MCP service designed for deploying HTML content to EdgeOne Pages and obtaining an accessible public URL.
Serper MCP ServerA Serper MCP Server
Jina AI MCP ToolsA Model Context Protocol (MCP) server that integrates with Jina AI Search Foundation APIs.
Amap Maps高德地图官方 MCP Server
CursorThe AI Code Editor
TimeA Model Context Protocol server that provides time and timezone conversion capabilities. This server enables LLMs to get current time information and perform timezone conversions using IANA timezone names, with automatic system timezone detection.
Visual Studio Code - Open Source ("Code - OSS")Visual Studio Code
Context7Context7 MCP Server -- Up-to-date code documentation for LLMs and AI code editors
Tavily Mcp
AiimagemultistyleA Model Context Protocol (MCP) server for image generation and manipulation using fal.ai's Stable Diffusion model.
MiniMax MCPOfficial MiniMax Model Context Protocol (MCP) server that enables interaction with powerful Text to Speech, image generation and video generation APIs.
Howtocook Mcp基于Anduin2017 / HowToCook (程序员在家做饭指南)的mcp server,帮你推荐菜谱、规划膳食,解决“今天吃什么“的世纪难题;
Based on Anduin2017/HowToCook (Programmer's Guide to Cooking at Home), MCP Server helps you recommend recipes, plan meals, and solve the century old problem of "what to eat today"
Zhipu Web SearchZhipu Web Search MCP Server is a search engine specifically designed for large models. It integrates four search engines, allowing users to flexibly compare and switch between them. Building upon the web crawling and ranking capabilities of traditional search engines, it enhances intent recognition capabilities, returning results more suitable for large model processing (such as webpage titles, URLs, summaries, site names, site icons, etc.). This helps AI applications achieve "dynamic knowledge acquisition" and "precise scenario adaptation" capabilities.
BlenderBlenderMCP connects Blender to Claude AI through the Model Context Protocol (MCP), allowing Claude to directly interact with and control Blender. This integration enables prompt assisted 3D modeling, scene creation, and manipulation.
Baidu Map百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。