Sponsored by Deepsite.site

Signal Agent ๐Ÿšจ

Created By
no0ktheali3n7 months ago
MCP server / agent concept for signals interpretation and processing
Content

Signal Agent ๐Ÿšจ

Intelligent Failure Event Processing via Model Context Protocol (MCP)

A production-ready MCP server and client system that transforms raw failure events into actionable intelligence through automated classification, severity analysis, and response recommendations.

MCP Protocol Python Transport

๐ŸŽฏ What is Signal Agent?

Signal Agent demonstrates the power of the Model Context Protocol (MCP) for building intelligent automation systems. It processes failure events through a sophisticated analysis pipeline that:

  • ๐Ÿ” Analyzes failure event content using keyword-based severity assessment
  • ๐Ÿ“Š Classifies events into operational categories (database, network, security, etc.)
  • ๐Ÿ’ก Generates appropriate response recommendations
  • ๐Ÿ“‹ Formats human-readable summaries for operational teams

โœจ Key Features

๐Ÿ—๏ธ Production-Ready Architecture

  • Standards-compliant MCP implementation using official SDK
  • Robust input validation with Pydantic schemas
  • Comprehensive error handling and logging
  • Transport-agnostic design (stdio for development, HTTP for production)

๐Ÿง  Intelligent Analysis Pipeline

  • Multi-stage event processing with validation and enrichment
  • Keyword-based severity recalculation independent of source assessment
  • Operational classification for proper incident routing
  • Contextual recommendations based on severity and event type

๐Ÿ”ง Developer Experience

  • Multiple deployment modes (integrated demo, server-only, agent-only)
  • MCP Inspector compatibility for interactive testing
  • Comprehensive logging and debugging support
  • Clear separation of concerns between transport and business logic

Component Architecture

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”    MCP Protocol    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚   Signal Agent  โ”‚โ—„โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–บโ”‚  Signal Server   โ”‚
โ”‚   (Client)      โ”‚     stdio/HTTP     โ”‚   (MCP Server)   โ”‚
โ”‚                 โ”‚                    โ”‚                  โ”‚
โ”‚ โ€ข Event Loading โ”‚                    โ”‚ โ€ข Tool Registry  โ”‚
โ”‚ โ€ข Result Displayโ”‚                    โ”‚ โ€ข Event Analysis โ”‚
โ”‚ โ€ข Demo Workflow โ”‚                    โ”‚ โ€ข Classification โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜                    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

Transport Evolution

Development (Current)

  • Transport: stdio
  • Use Case: Local development, testing, MCP Inspector integration
  • Benefits: Simple, reliable, no network dependencies

Production (Future)

  • Transport: HTTP (streamable-http)
  • Use Case: Distributed systems, enterprise deployment
  • Benefits: Network scalability, multiple clients, load balancing

Analysis Pipeline

  1. Input Validation โ†’ Pydantic schema enforcement
  2. Severity Analysis โ†’ Keyword-based recalculation
  3. Event Classification โ†’ Operational categorization
  4. Recommendation โ†’ Context-aware response generation
  5. Formatting โ†’ Human-readable summary creation

Extensibility Points

  • Analysis Functions: Easy to add new classification patterns
  • Transport Layer: Pluggable transport implementations
  • Tool Registry: Simple addition of new MCP tools
  • Response Formatting: Customizable output formats

๐Ÿš€ Quick Start

Prerequisites

  • Python 3.8+
  • uv (modern Python package manager)
  • just

Installation

git clone https://github.com/no0ktheali3n/signal-agent.git
cd signal-agent
uv venv
.venv/Scripts/activate
just compile
just sync

Run the Demo

# Full integrated demonstration
just run

# Server only (for MCP Inspector testing)  
just run-server

# Agent only (launches server subprocess)
just run-agent

Available Commands

just compile      # Lock dependencies
just sync         # Install dependencies  
just upgrade      # Upgrade all dependencies
just activate     # Activate virtual environment
just run [mode]   # Run Signal Agent (demo/server/agent)

๐Ÿ—๏ธ Architecture

Signal Agent follows a clean, modular architecture that separates concerns and enables easy evolution:

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”    MCP Protocol    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚   Signal Agent  โ”‚โ—„โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–บโ”‚  Signal Server   โ”‚
โ”‚   (Client)      โ”‚     stdio/HTTP     โ”‚   (MCP Server)   โ”‚
โ”‚                 โ”‚                    โ”‚                  โ”‚
โ”‚ โ€ข Event Loading โ”‚                    โ”‚ โ€ข Tool Registry  โ”‚
โ”‚ โ€ข Result Displayโ”‚                    โ”‚ โ€ข Event Analysis โ”‚
โ”‚ โ€ข Demo Workflow โ”‚                    โ”‚ โ€ข Classification โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜                    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

Core Components

๐Ÿ–ฅ๏ธ Signal Server (server/server.py)

  • MCP-compliant server using official SDK
  • Tool registration with proper input schemas
  • Event analysis pipeline with multi-stage processing
  • Standards-based responses with TextContent formatting

๐Ÿค– Signal Agent (agent/signal_agent.py)

  • MCP client with stdio transport
  • Event processing workflow coordination
  • Result formatting and display
  • Demo capabilities with test data

๐ŸŽ›๏ธ Main Orchestrator (main.py)

  • Multi-mode deployment (demo, server-only, agent-only)
  • Component lifecycle management
  • Graceful shutdown handling

๐Ÿ”ง MCP Integration

Server Tools

classify_failure_event

Processes failure events through intelligent analysis pipeline.

Input Schema:

{
  "event_data": "JSON string containing FailureEvent"
}

Example Usage:

{
  "event_id": "sig_001_db_failure",
  "timestamp": "2024-12-11T14:30:45Z",
  "service": "user-authentication-service",
  "severity": "critical",
  "message": "PostgreSQL connection pool exhausted",
  "details": {
    "pool_size": 20,
    "active_connections": 20,
    "queue_length": 150
  }
}

Response:

{
  "event_id": "sig_001_db_failure",
  "original_severity": "critical",
  "calculated_severity": "critical",
  "classification": "database_issue",
  "recommendation": "Immediate attention required - escalate to on-call engineer",
  "human_readable": "๐Ÿšจ Signal Alert: sig_001_db_failure...",
  "status": "processed"
}

health_check

Server health and connectivity verification.

Testing with MCP Inspector


# In another terminal, launch MCP Inspector
npx @modelcontextprotocol/inspector uv run python server/server.py

The inspector will provide a web interface at http://localhost:#### for interactive tool testing.

๐Ÿ“Š Analysis Pipeline

Signal Agent processes events through multi-stage pipeline:

1. Input Validation

  • JSON parsing and structure validation
  • Pydantic model enforcement
  • Required field verification

2. Severity Analysis

  • Keyword-based content analysis
  • Pattern matching against severity indicators
  • Independent recalculation from source assessment

3. Event Classification

  • Operational category determination
  • Pattern matching for:
    • Database issues
    • Network problems
    • Resource constraints
    • Security incidents
    • Service failures

4. Recommendation Generation

  • Context-aware response suggestions
  • Severity-based escalation rules
  • Standardized operational procedures

5. Summary Formatting

  • Human-readable result compilation
  • Structured display formatting
  • Operational dashboard compatibility

๐ŸŽฏ Use Cases

๐Ÿข Enterprise Operations

  • Incident Response Automation - Intelligent event triage and routing
  • Operational Intelligence - Pattern recognition and trend analysis
  • Team Coordination - Standardized communication and escalation

๐Ÿ”ง Development Workflows

  • Monitoring Integration - Process alerts from Sentry, Datadog, etc.
  • CI/CD Enhancement - Automated failure analysis and reporting
  • Quality Assurance - Systematic error categorization and tracking

๐Ÿ“š Learning and Research

  • MCP Protocol Examples - Reference implementation patterns
  • AI Integration Patterns - Intelligent automation architectures
  • Protocol Standards - Best practices for MCP server development

๐Ÿ› ๏ธ Development

Project Structure

signal-agent/
โ”œโ”€โ”€ server/
โ”‚   โ””โ”€โ”€ server.py          # MCP server implementation
โ”œโ”€โ”€ agent/
โ”‚   โ””โ”€โ”€ signal_agent.py    # MCP client implementation
โ”œโ”€โ”€ main.py                # System orchestrator
โ”œโ”€โ”€ events/
โ”‚   โ””โ”€โ”€ test_payload.json  # Demo event data
โ”œโ”€โ”€ docs/                  # Documentation
โ””โ”€โ”€ examples/              # Usage examples

Running Tests

# Test server with MCP Inspector
just run server
npx @modelcontextprotocol/inspector uv run python server/server.py

# Test full demo
just run

# Test individual components (without just)
uv run python server/server.py        # Server only
uv run python agent/signal_agent.py   # Agent only

# Test individual components (with just)

just run-server
just run-agent

Code Quality

  • Type hints throughout codebase
  • Comprehensive logging for debugging
  • Error handling with graceful degradation
  • Documentation for all public interfaces

๐Ÿš€ Evolution Roadmap

Signal Agent represents the foundation for more sophisticated incident response systems:

๐ŸŽฏ Current State

  • โœ… Standards-compliant MCP implementation
  • โœ… Intelligent event analysis
  • โœ… stdio support, integrating https-streamable asap
  • โœ… Production-ready architecture

๐Ÿ”ฎ Future Evolution

  • ๐ŸŒ HTTP transport for distributed deployments
  • ๐Ÿ“Š Multiple monitoring integrations (Sentry, Datadog, Raygun)
  • ๐Ÿค– Machine learning enhancement for pattern recognition
  • ๐Ÿค– Automated task processes AI enhanced data interpretation/delivery
  • ๐Ÿค– Agentic Augmentations for contextually aware interactions
  • ๐Ÿข Enterprise features for MSP environments

๐Ÿค Contributing

Contributions are welcome! This project demonstrates MCP best practices and serves as a reference for the community.

Areas for Contribution

  • Additional analysis patterns for different event types
  • Transport implementations (SSE, WebSocket)
  • Integration examples with popular monitoring tools
  • Documentation improvements and tutorials

๐Ÿ“„ License

MIT License - see LICENSE for details.

๐Ÿ™ Acknowledgments

Built with the official Model Context Protocol SDK and inspired by the need for intelligent automation in modern operations.


Signal Agent - Transforming raw failure events into actionable intelligence through the power of MCP. ๐Ÿšจโžก๏ธ๐Ÿง 

Recommend Servers
TraeBuild with Free GPT-4.1 & Claude 3.7. Fully MCP-Ready.
Context7Context7 MCP Server -- Up-to-date code documentation for LLMs and AI code editors
Visual Studio Code - Open Source ("Code - OSS")Visual Studio Code
Zhipu Web SearchZhipu Web Search MCP Server is a search engine specifically designed for large models. It integrates four search engines, allowing users to flexibly compare and switch between them. Building upon the web crawling and ranking capabilities of traditional search engines, it enhances intent recognition capabilities, returning results more suitable for large model processing (such as webpage titles, URLs, summaries, site names, site icons, etc.). This helps AI applications achieve "dynamic knowledge acquisition" and "precise scenario adaptation" capabilities.
WindsurfThe new purpose-built IDE to harness magic
TimeA Model Context Protocol server that provides time and timezone conversion capabilities. This server enables LLMs to get current time information and perform timezone conversions using IANA timezone names, with automatic system timezone detection.
Baidu Map็™พๅบฆๅœฐๅ›พๆ ธๅฟƒAPI็Žฐๅทฒๅ…จ้ขๅ…ผๅฎนMCPๅ่ฎฎ๏ผŒๆ˜ฏๅ›ฝๅ†…้ฆ–ๅฎถๅ…ผๅฎนMCPๅ่ฎฎ็š„ๅœฐๅ›พๆœๅŠกๅ•†ใ€‚
AiimagemultistyleA Model Context Protocol (MCP) server for image generation and manipulation using fal.ai's Stable Diffusion model.
CursorThe AI Code Editor
Playwright McpPlaywright MCP server
Serper MCP ServerA Serper MCP Server
ChatWiseThe second fastest AI chatbotโ„ข
Jina AI MCP ToolsA Model Context Protocol (MCP) server that integrates with Jina AI Search Foundation APIs.
BlenderBlenderMCP connects Blender to Claude AI through the Model Context Protocol (MCP), allowing Claude to directly interact with and control Blender. This integration enables prompt assisted 3D modeling, scene creation, and manipulation.
MCP AdvisorMCP Advisor & Installation - Use the right MCP server for your needs
EdgeOne Pages MCPAn MCP service designed for deploying HTML content to EdgeOne Pages and obtaining an accessible public URL.
Amap Maps้ซ˜ๅพทๅœฐๅ›พๅฎ˜ๆ–น MCP Server
Tavily Mcp
DeepChatYour AI Partner on Desktop
Howtocook McpๅŸบไบŽAnduin2017 / HowToCook ๏ผˆ็จ‹ๅบๅ‘˜ๅœจๅฎถๅš้ฅญๆŒ‡ๅ—๏ผ‰็š„mcp server๏ผŒๅธฎไฝ ๆŽจ่่œ่ฐฑใ€่ง„ๅˆ’่†ณ้ฃŸ๏ผŒ่งฃๅ†ณโ€œไปŠๅคฉๅƒไป€ไนˆโ€œ็š„ไธ–็บช้šพ้ข˜๏ผ› Based on Anduin2017/HowToCook (Programmer's Guide to Cooking at Home), MCP Server helps you recommend recipes, plan meals, and solve the century old problem of "what to eat today"
MiniMax MCPOfficial MiniMax Model Context Protocol (MCP) server that enables interaction with powerful Text to Speech, image generation and video generation APIs.