Sponsored by Deepsite.site

Simply MCP

Created By
noname90917 months ago
simply a TypeScript framework for building MCP servers
Content

Simply MCP

A TypeScript framework for building MCP servers capable of handling client sessions.

NOTE

For a Python implementation, see sova.

Features

Installation

npm install sova

Quickstart

NOTE

There are many real-world examples of using sova in the wild. See the Showcase for examples.

import { sova } from "simply";
import { z } from "zod"; // Or any validation library that supports Standard Schema

const server = new simply({
  name: "My Server",
  version: "1.0.0",
});

server.addTool({
  name: "add",
  description: "Add two numbers",
  parameters: z.object({
    a: z.number(),
    b: z.number(),
  }),
  execute: async (args) => {
    return String(args.a + args.b);
  },
});

server.start({
  transportType: "stdio",
});

That's it! You have a working MCP server.

You can test the server in terminal with:

git clone https://github.com/nonameguy9091/simply.git
cd simply

pnpm install
pnpm build

# Test the addition server example using CLI:
npx sova dev src/examples/addition.ts
# Test the addition server example using MCP Inspector:
npx sova inspect src/examples/addition.ts

SSE

Server-Sent Events (SSE) provide a mechanism for servers to send real-time updates to clients over an HTTPS connection. In the context of MCP, SSE is primarily used to enable remote MCP communication, allowing an MCP hosted on a remote machine to be accessed and relay updates over the network.

You can also run the server with SSE support:

server.start({
  transportType: "sse",
  sse: {
    endpoint: "/sse",
    port: 8080,
  },
});

This will start the server and listen for SSE connections on http://localhost:8080/sse.

You can then use SSEClientTransport to connect to the server:

import { SSEClientTransport } from "@modelcontextprotocol/sdk/client/sse.js";

const client = new Client(
  {
    name: "example-client",
    version: "1.0.0",
  },
  {
    capabilities: {},
  },
);

const transport = new SSEClientTransport(new URL(`http://localhost:8080/sse`));

await client.connect(transport);

Core Concepts

Tools

Tools in MCP allow servers to expose executable functions that can be invoked by clients and used by LLMs to perform actions.

sova uses the Standard Schema specification for defining tool parameters. This allows you to use your preferred schema validation library (like Zod, ArkType, or Valibot) as long as it implements the spec.

Zod Example:

import { z } from "zod";

server.addTool({
  name: "fetch-zod",
  description: "Fetch the content of a url (using Zod)",
  parameters: z.object({
    url: z.string(),
  }),
  execute: async (args) => {
    return await fetchWebpageContent(args.url);
  },
});

ArkType Example:

import { type } from "arktype";

server.addTool({
  name: "fetch-arktype",
  description: "Fetch the content of a url (using ArkType)",
  parameters: type({
    url: "string",
  }),
  execute: async (args) => {
    return await fetchWebpageContent(args.url);
  },
});

Valibot Example:

Valibot requires the peer dependency @valibot/to-json-schema.

import * as v from "valibot";

server.addTool({
  name: "fetch-valibot",
  description: "Fetch the content of a url (using Valibot)",
  parameters: v.object({
    url: v.string(),
  }),
  execute: async (args) => {
    return await fetchWebpageContent(args.url);
  },
});

Returning a string

execute can return a string:

server.addTool({
  name: "download",
  description: "Download a file",
  parameters: z.object({
    url: z.string(),
  }),
  execute: async (args) => {
    return "Hello, world!";
  },
});

The latter is equivalent to:

server.addTool({
  name: "download",
  description: "Download a file",
  parameters: z.object({
    url: z.string(),
  }),
  execute: async (args) => {
    return {
      content: [
        {
          type: "text",
          text: "Hello, world!",
        },
      ],
    };
  },
});

Returning a list

If you want to return a list of messages, you can return an object with a content property:

server.addTool({
  name: "download",
  description: "Download a file",
  parameters: z.object({
    url: z.string(),
  }),
  execute: async (args) => {
    return {
      content: [
        { type: "text", text: "First message" },
        { type: "text", text: "Second message" },
      ],
    };
  },
});

Returning an image

Use the imageContent to create a content object for an image:

import { imageContent } from "sova";

server.addTool({
  name: "download",
  description: "Download a file",
  parameters: z.object({
    url: z.string(),
  }),
  execute: async (args) => {
    return imageContent({
      url: "https://example.com/image.png",
    });

    // or...
    // return imageContent({
    //   path: "/path/to/image.png",
    // });

    // or...
    // return imageContent({
    //   buffer: Buffer.from("iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNkYAAAAAYAAjCB0C8AAAAASUVORK5CYII=", "base64"),
    // });

    // or...
    // return {
    //   content: [
    //     await imageContent(...)
    //   ],
    // };
  },
});

The imageContent function takes the following options:

  • url: The URL of the image.
  • path: The path to the image file.
  • buffer: The image data as a buffer.

Only one of url, path, or buffer must be specified.

The above example is equivalent to:

server.addTool({
  name: "download",
  description: "Download a file",
  parameters: z.object({
    url: z.string(),
  }),
  execute: async (args) => {
    return {
      content: [
        {
          type: "image",
          data: "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNkYAAAAAYAAjCB0C8AAAAASUVORK5CYII=",
          mimeType: "image/png",
        },
      ],
    };
  },
});

Returning an audio

Use the audioContent to create a content object for an audio:

import { audioContent } from "sova";

server.addTool({
  name: "download",
  description: "Download a file",
  parameters: z.object({
    url: z.string(),
  }),
  execute: async (args) => {
    return audioContent({
      url: "https://example.com/audio.mp3",
    });

    // or...
    // return audioContent({
    //   path: "/path/to/audio.mp3",
    // });

    // or...
    // return audioContent({
    //   buffer: Buffer.from("iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNkYAAAAAYAAjCB0C8AAAAASUVORK5CYII=", "base64"),
    // });

    // or...
    // return {
    //   content: [
    //     await audioContent(...)
    //   ],
    // };
  },
});

The audioContent function takes the following options:

  • url: The URL of the audio.
  • path: The path to the audio file.
  • buffer: The audio data as a buffer.

Only one of url, path, or buffer must be specified.

The above example is equivalent to:

server.addTool({
  name: "download",
  description: "Download a file",
  parameters: z.object({
    url: z.string(),
  }),
  execute: async (args) => {
    return {
      content: [
        {
          type: "audio",
          data: "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNkYAAAAAYAAjCB0C8AAAAASUVORK5CYII=",
          mimeType: "audio/mpeg",
        },
      ],
    };
  },
});

Return combination type

You can combine various types in this way and send them back to AI

server.addTool({
  name: "download",
  description: "Download a file",
  parameters: z.object({
    url: z.string(),
  }),
  execute: async (args) => {
    return {
      content: [
        {
          type: "text",
          text: "Hello, world!",
        },
        {
          type: "image",
          data: "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNkYAAAAAYAAjCB0C8AAAAASUVORK5CYII=",
          mimeType: "image/png",
        },
        {
          type: "audio",
          data: "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNkYAAAAAYAAjCB0C8AAAAASUVORK5CYII=",
          mimeType: "audio/mpeg",
        },
      ],
    };
  },

  // or...
  // execute: async (args) => {
  //   const imgContent = imageContent({
  //     url: "https://example.com/image.png",
  //   });
  //   const audContent = audioContent({
  //     url: "https://example.com/audio.mp3",
  //   });
  //   return {
  //     content: [
  //       {
  //         type: "text",
  //         text: "Hello, world!",
  //       },
  //       imgContent,
  //       audContent,
  //     ],
  //   };
  // },
});

Logging

Tools can log messages to the client using the log object in the context object:

server.addTool({
  name: "download",
  description: "Download a file",
  parameters: z.object({
    url: z.string(),
  }),
  execute: async (args, { log }) => {
    log.info("Downloading file...", {
      url,
    });

    // ...

    log.info("Downloaded file");

    return "done";
  },
});

The log object has the following methods:

  • debug(message: string, data?: SerializableValue)
  • error(message: string, data?: SerializableValue)
  • info(message: string, data?: SerializableValue)
  • warn(message: string, data?: SerializableValue)

Errors

The errors that are meant to be shown to the user should be thrown as UserError instances:

import { UserError } from "sova";

server.addTool({
  name: "download",
  description: "Download a file",
  parameters: z.object({
    url: z.string(),
  }),
  execute: async (args) => {
    if (args.url.startsWith("https://example.com")) {
      throw new UserError("This URL is not allowed");
    }

    return "done";
  },
});

Progress

Tools can report progress by calling reportProgress in the context object:

server.addTool({
  name: "download",
  description: "Download a file",
  parameters: z.object({
    url: z.string(),
  }),
  execute: async (args, { reportProgress }) => {
    reportProgress({
      progress: 0,
      total: 100,
    });

    // ...

    reportProgress({
      progress: 100,
      total: 100,
    });

    return "done";
  },
});

Tool Annotations

As of the MCP Specification (2025-03-26), tools can include annotations that provide richer context and control by adding metadata about a tool's behavior:

server.addTool({
  name: "fetch-content",
  description: "Fetch content from a URL",
  parameters: z.object({
    url: z.string(),
  }),
  annotations: {
    title: "Web Content Fetcher", // Human-readable title for UI display
    readOnlyHint: true, // Tool doesn't modify its environment
    openWorldHint: true, // Tool interacts with external entities
  },
  execute: async (args) => {
    return await fetchWebpageContent(args.url);
  },
});

The available annotations are:

AnnotationTypeDefaultDescription
titlestring-A human-readable title for the tool, useful for UI display
readOnlyHintbooleanfalseIf true, indicates the tool does not modify its environment
destructiveHintbooleantrueIf true, the tool may perform destructive updates (only meaningful when readOnlyHint is false)
idempotentHintbooleanfalseIf true, calling the tool repeatedly with the same arguments has no additional effect (only meaningful when readOnlyHint is false)
openWorldHintbooleantrueIf true, the tool may interact with an "open world" of external entities

These annotations help clients and LLMs better understand how to use the tools and what to expect when calling them.

Resources

Resources represent any kind of data that an MCP server wants to make available to clients. This can include:

  • File contents
  • Screenshots and images
  • And more

Each resource is identified by a unique URI and can contain either text or binary data.

server.addResource({
  uri: "file:///logs/app.log",
  name: "Application Logs",
  mimeType: "text/plain",
  async load() {
    return {
      text: await readLogFile(),
    };
  },
});

NOTE

load can return multiple resources. This could be used, for example, to return a list of files inside a directory when the directory is read.

async load() {
  return [
    {
      text: "First file content",
    },
    {
      text: "Second file content",
    },
  ];
}

You can also return binary contents in load:

async load() {
  return {
    blob: 'base64-encoded-data'
  };
}

Resource templates

You can also define resource templates:

server.addResourceTemplate({
  uriTemplate: "file:///logs/{name}.log",
  name: "Application Logs",
  mimeType: "text/plain",
  arguments: [
    {
      name: "name",
      description: "Name of the log",
      required: true,
    },
  ],
  async load({ name }) {
    return {
      text: `Example log content for ${name}`,
    };
  },
});

Resource template argument auto-completion

Provide complete functions for resource template arguments to enable automatic completion:

server.addResourceTemplate({
  uriTemplate: "file:///logs/{name}.log",
  name: "Application Logs",
  mimeType: "text/plain",
  arguments: [
    {
      name: "name",
      description: "Name of the log",
      required: true,
      complete: async (value) => {
        if (value === "Example") {
          return {
            values: ["Example Log"],
          };
        }

        return {
          values: [],
        };
      },
    },
  ],
  async load({ name }) {
    return {
      text: `Example log content for ${name}`,
    };
  },
});

Prompts

Prompts enable servers to define reusable prompt templates and workflows that clients can easily surface to users and LLMs. They provide a powerful way to standardize and share common LLM interactions.

server.addPrompt({
  name: "git-commit",
  description: "Generate a Git commit message",
  arguments: [
    {
      name: "changes",
      description: "Git diff or description of changes",
      required: true,
    },
  ],
  load: async (args) => {
    return `Generate a concise but descriptive commit message for these changes:\n\n${args.changes}`;
  },
});

Prompt argument auto-completion

Prompts can provide auto-completion for their arguments:

server.addPrompt({
  name: "countryPoem",
  description: "Writes a poem about a country",
  load: async ({ name }) => {
    return `Hello, ${name}!`;
  },
  arguments: [
    {
      name: "name",
      description: "Name of the country",
      required: true,
      complete: async (value) => {
        if (value === "Germ") {
          return {
            values: ["Germany"],
          };
        }

        return {
          values: [],
        };
      },
    },
  ],
});

Prompt argument auto-completion using enum

If you provide an enum array for an argument, the server will automatically provide completions for the argument.

server.addPrompt({
  name: "countryPoem",
  description: "Writes a poem about a country",
  load: async ({ name }) => {
    return `Hello, ${name}!`;
  },
  arguments: [
    {
      name: "name",
      description: "Name of the country",
      required: true,
      enum: ["Germany", "France", "Italy"],
    },
  ],
});

Authentication

sova allows you to authenticate clients using a custom function:

import { AuthError } from "sova";

const server = new sova({
  name: "My Server",
  version: "1.0.0",
  authenticate: ({ request }) => {
    const apiKey = request.headers["x-api-key"];

    if (apiKey !== "123") {
      throw new Response(null, {
        status: 401,
        statusText: "Unauthorized",
      });
    }

    // Whatever you return here will be accessible in the `context.session` object.
    return {
      id: 1,
    };
  },
});

Now you can access the authenticated session data in your tools:

server.addTool({
  name: "sayHello",
  execute: async (args, { session }) => {
    return `Hello, ${session.id}!`;
  },
});

Providing Instructions

You can provide instructions to the server using the instructions option:

const server = new sova({
  name: "My Server",
  version: "1.0.0",
  instructions:
    'Instructions describing how to use the server and its features.\n\nThis can be used by clients to improve the LLM\'s understanding of available tools, resources, etc. It can be thought of like a "hint" to the model. For example, this information MAY be added to the system prompt.',
});

Sessions

The session object is an instance of sovaSession and it describes active client sessions.

server.sessions;

We allocate a new server instance for each client connection to enable 1:1 communication between a client and the server.

Typed server events

You can listen to events emitted by the server using the on method:

server.on("connect", (event) => {
  console.log("Client connected:", event.session);
});

server.on("disconnect", (event) => {
  console.log("Client disconnected:", event.session);
});

sovaSession

sovaSession represents a client session and provides methods to interact with the client.

Refer to Sessions for examples of how to obtain a sovaSession instance.

requestSampling

requestSampling creates a sampling request and returns the response.

await session.requestSampling({
  messages: [
    {
      role: "user",
      content: {
        type: "text",
        text: "What files are in the current directory?",
      },
    },
  ],
  systemPrompt: "You are a helpful file system assistant.",
  includeContext: "thisServer",
  maxTokens: 100,
});

clientCapabilities

The clientCapabilities property contains the client capabilities.

session.clientCapabilities;

loggingLevel

The loggingLevel property describes the logging level as set by the client.

session.loggingLevel;

roots

The roots property contains the roots as set by the client.

session.roots;

server

The server property contains an instance of MCP server that is associated with the session.

session.server;

Typed session events

You can listen to events emitted by the session using the on method:

session.on("rootsChanged", (event) => {
  console.log("Roots changed:", event.roots);
});

session.on("error", (event) => {
  console.error("Error:", event.error);
});

Running Your Server

Test with mcp-cli

The fastest way to test and debug your server is with sova dev:

npx sova dev server.js
npx sova dev server.ts

This will run your server with mcp-cli for testing and debugging your MCP server in the terminal.

Inspect with MCP Inspector

Another way is to use the official MCP Inspector to inspect your server with a Web UI:

npx sova inspect server.ts

FAQ

How to use with Claude Desktop?

Follow the guide https://modelcontextprotocol.io/quickstart/user and add the following configuration:

{
  "mcpServers": {
    "my-mcp-server": {
      "command": "npx",
      "args": ["tsx", "/PATH/TO/YOUR_PROJECT/src/index.ts"],
      "env": {
        "YOUR_ENV_VAR": "value"
      }
    }
  }
}

Acknowledgements

Recommend Servers
TraeBuild with Free GPT-4.1 & Claude 3.7. Fully MCP-Ready.
EdgeOne Pages MCPAn MCP service designed for deploying HTML content to EdgeOne Pages and obtaining an accessible public URL.
BlenderBlenderMCP connects Blender to Claude AI through the Model Context Protocol (MCP), allowing Claude to directly interact with and control Blender. This integration enables prompt assisted 3D modeling, scene creation, and manipulation.
Serper MCP ServerA Serper MCP Server
MiniMax MCPOfficial MiniMax Model Context Protocol (MCP) server that enables interaction with powerful Text to Speech, image generation and video generation APIs.
Howtocook Mcp基于Anduin2017 / HowToCook (程序员在家做饭指南)的mcp server,帮你推荐菜谱、规划膳食,解决“今天吃什么“的世纪难题; Based on Anduin2017/HowToCook (Programmer's Guide to Cooking at Home), MCP Server helps you recommend recipes, plan meals, and solve the century old problem of "what to eat today"
ChatWiseThe second fastest AI chatbot™
Playwright McpPlaywright MCP server
Zhipu Web SearchZhipu Web Search MCP Server is a search engine specifically designed for large models. It integrates four search engines, allowing users to flexibly compare and switch between them. Building upon the web crawling and ranking capabilities of traditional search engines, it enhances intent recognition capabilities, returning results more suitable for large model processing (such as webpage titles, URLs, summaries, site names, site icons, etc.). This helps AI applications achieve "dynamic knowledge acquisition" and "precise scenario adaptation" capabilities.
MCP AdvisorMCP Advisor & Installation - Use the right MCP server for your needs
Jina AI MCP ToolsA Model Context Protocol (MCP) server that integrates with Jina AI Search Foundation APIs.
TimeA Model Context Protocol server that provides time and timezone conversion capabilities. This server enables LLMs to get current time information and perform timezone conversions using IANA timezone names, with automatic system timezone detection.
AiimagemultistyleA Model Context Protocol (MCP) server for image generation and manipulation using fal.ai's Stable Diffusion model.
Amap Maps高德地图官方 MCP Server
Context7Context7 MCP Server -- Up-to-date code documentation for LLMs and AI code editors
WindsurfThe new purpose-built IDE to harness magic
CursorThe AI Code Editor
Tavily Mcp
DeepChatYour AI Partner on Desktop
Baidu Map百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Visual Studio Code - Open Source ("Code - OSS")Visual Studio Code