Sponsored by Deepsite.site

Surreal Mcp

Created By
lfnovo4 months ago
Content

SurrealDB MCP Server

SurrealDB Logo

A Model Context Protocol (MCP) server that enables AI assistants to interact with SurrealDB databases

Test Python Version FastMCP SurrealDB

=� Overview

The SurrealDB MCP Server bridges the gap between AI assistants and SurrealDB, providing a standardized interface for database operations through the Model Context Protocol. This enables LLMs to:

  • Execute complex SurrealQL queries
  • Perform CRUD operations on records
  • Manage graph relationships
  • Handle bulk operations efficiently
  • Work with SurrealDB's unique features like record IDs and graph edges

( Features

  • Full SurrealQL Support: Execute any SurrealQL query directly
  • Comprehensive CRUD Operations: Create, read, update, delete with ease
  • Graph Database Operations: Create and traverse relationships between records
  • Bulk Operations: Efficient multi-record inserts
  • Smart Updates: Full updates, merges, and patches
  • Type-Safe: Proper handling of SurrealDB's RecordIDs
  • Connection Pooling: Efficient database connection management
  • Detailed Documentation: Extensive docstrings for AI comprehension

=� Prerequisites

  • Python 3.10 or higher
  • SurrealDB instance (local or remote)
  • MCP-compatible client (Claude Desktop, MCP CLI, etc.)

=� Installation

Using uvx (Simplest - No Installation Required)

# Run directly from PyPI (once published)
uvx surreal-mcp

# Or run from GitHub
uvx --from git+https://github.com/yourusername/surreal-mcp.git surreal-mcp
# Clone the repository
git clone https://github.com/yourusername/surreal-mcp.git
cd surreal-mcp

# Install dependencies
uv sync

# Run the server (multiple ways)
uv run surreal-mcp
# or
uv run python -m surreal_mcp
# or
uv run python main.py

Using pip

# Clone the repository
git clone https://github.com/yourusername/surreal-mcp.git
cd surreal-mcp

# Create virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install package
pip install -e .

# Run the server
surreal-mcp
# or
python -m surreal_mcp

� Configuration

The server requires the following environment variables:

VariableDescriptionExample
SURREAL_URLSurrealDB connection URLws://localhost:8000/rpc
SURREAL_USERDatabase usernameroot
SURREAL_PASSWORDDatabase passwordroot
SURREAL_NAMESPACESurrealDB namespacetest
SURREAL_DATABASESurrealDB databasetest

Setting Environment Variables

You can copy .env.example to .env and update with your values:

cp .env.example .env
# Edit .env with your database credentials

Or set them manually:

export SURREAL_URL="ws://localhost:8000/rpc"
export SURREAL_USER="root"
export SURREAL_PASSWORD="root"
export SURREAL_NAMESPACE="test"
export SURREAL_DATABASE="test"

MCP Client Configuration

Add to your MCP client settings (e.g., Claude Desktop):

Using uvx (recommended):

{
  "mcpServers": {
    "surrealdb": {
      "command": "uvx",
      "args": ["surreal-mcp"],
      "env": {
        "SURREAL_URL": "ws://localhost:8000/rpc",
        "SURREAL_USER": "root",
        "SURREAL_PASSWORD": "root",
        "SURREAL_NAMESPACE": "test",
        "SURREAL_DATABASE": "test"
      }
    }
  }
}

Using local installation:

{
  "mcpServers": {
    "surrealdb": {
      "command": "uv",
      "args": ["run", "surreal-mcp"],
      "env": {
        "SURREAL_URL": "ws://localhost:8000/rpc",
        "SURREAL_USER": "root",
        "SURREAL_PASSWORD": "root",
        "SURREAL_NAMESPACE": "test",
        "SURREAL_DATABASE": "test"
      }
    }
  }
}

=' Available Tools

1. query

Execute raw SurrealQL queries for complex operations.

-- Example: Complex query with graph traversal
SELECT *, ->purchased->product FROM user WHERE age > 25

2. select

Retrieve all records from a table or a specific record by ID.

# Get all users
select("user")

# Get specific user
select("user", "john")

3. create

Create a new record with auto-generated ID.

create("user", {
    "name": "Alice",
    "email": "alice@example.com",
    "age": 30
})

4. update

Replace entire record content (preserves ID and timestamps).

update("user:john", {
    "name": "John Smith",
    "email": "john.smith@example.com",
    "age": 31
})

5. delete

Permanently remove a record from the database.

delete("user:john")

6. merge

Partially update specific fields without affecting others.

merge("user:john", {
    "email": "newemail@example.com",
    "verified": True
})

7. patch

Apply JSON Patch operations (RFC 6902) to records.

patch("user:john", [
    {"op": "replace", "path": "/email", "value": "new@example.com"},
    {"op": "add", "path": "/verified", "value": True}
])

8. upsert

Create or update a record with specific ID.

upsert("settings:global", {
    "theme": "dark",
    "language": "en"
})

9. insert

Bulk insert multiple records efficiently.

insert("product", [
    {"name": "Laptop", "price": 999.99},
    {"name": "Mouse", "price": 29.99},
    {"name": "Keyboard", "price": 79.99}
])

10. relate

Create graph relationships between records.

relate(
    "user:john",           # from
    "purchased",           # relation name
    "product:laptop-123",  # to
    {"quantity": 1, "date": "2024-01-15"}  # relation data
)

=� Examples

Basic CRUD Operations

# Create a user
user = create("user", {"name": "Alice", "email": "alice@example.com"})

# Update specific fields
merge(user["id"], {"verified": True, "last_login": "2024-01-01"})

# Query with conditions
results = query("SELECT * FROM user WHERE verified = true ORDER BY created DESC")

# Delete when done
delete(user["id"])

Working with Relationships

# Create entities
user = create("user", {"name": "John"})
product = create("product", {"name": "Laptop", "price": 999})

# Create relationship
relate(user["id"], "purchased", product["id"], {
    "quantity": 1,
    "total": 999,
    "date": "2024-01-15"
})

# Query relationships
purchases = query(f"SELECT * FROM {user['id']}->purchased->product")

Bulk Operations

# Insert multiple records
products = insert("product", [
    {"name": "Laptop", "category": "Electronics", "price": 999},
    {"name": "Mouse", "category": "Electronics", "price": 29},
    {"name": "Desk", "category": "Furniture", "price": 299}
])

# Bulk update with query
query("UPDATE product SET on_sale = true WHERE category = 'Electronics'")

<� Architecture

The server is built with:

  • FastMCP: Simplified MCP server implementation
  • SurrealDB Python SDK: Official database client
  • Connection Pooling: Efficient connection management
  • Async/Await: Non-blocking database operations

>� Testing

The project includes a comprehensive test suite using pytest.

Prerequisites

  • SurrealDB instance running locally
  • Test database access (uses temporary test databases)

Running Tests

# Make sure SurrealDB is running
surreal start --user root --pass root

# Run all tests
uv run pytest

# Run with coverage
uv run pytest --cov=surreal_mcp

# Run specific test file
uv run pytest tests/test_tools.py

# Run specific test class or method
uv run pytest tests/test_tools.py::TestQueryTool
uv run pytest tests/test_tools.py::TestQueryTool::test_query_simple

# Run with verbose output
uv run pytest -v

# Run only tests matching a pattern
uv run pytest -k "test_create"

Test Structure

tests/
├── __init__.py
├── conftest.py         # Fixtures and test configuration
├── test_tools.py       # Tests for all MCP tools
└── test_server.py      # Tests for server configuration

Writing Tests

The test suite includes fixtures for common test data:

  • clean_db - Ensures clean database state
  • sample_user_data - Sample user data
  • created_user - Pre-created user record
  • created_product - Pre-created product record

Example test:

@pytest.mark.asyncio
async def test_create_user(clean_db, sample_user_data):
    result = await mcp._tools["create"].func(
        table="user",
        data=sample_user_data
    )
    assert result["success"] is True
    assert result["data"]["email"] == sample_user_data["email"]

> Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

=� License

This project is licensed under the MIT License - see the LICENSE file for details.

=O Acknowledgments

=� Support


Made with d for the SurrealDB and MCP communities

Server Config

{
  "mcpServers": {
    "surrealdb": {
      "command": "uvx",
      "args": [
        "surreal-mcp"
      ],
      "env": {
        "SURREAL_URL": "ws://localhost:8000/rpc",
        "SURREAL_USER": "root",
        "SURREAL_PASSWORD": "root",
        "SURREAL_NAMESPACE": "test",
        "SURREAL_DATABASE": "test"
      }
    }
  }
}
Recommend Servers
TraeBuild with Free GPT-4.1 & Claude 3.7. Fully MCP-Ready.
WindsurfThe new purpose-built IDE to harness magic
TimeA Model Context Protocol server that provides time and timezone conversion capabilities. This server enables LLMs to get current time information and perform timezone conversions using IANA timezone names, with automatic system timezone detection.
EdgeOne Pages MCPAn MCP service designed for deploying HTML content to EdgeOne Pages and obtaining an accessible public URL.
BlenderBlenderMCP connects Blender to Claude AI through the Model Context Protocol (MCP), allowing Claude to directly interact with and control Blender. This integration enables prompt assisted 3D modeling, scene creation, and manipulation.
Serper MCP ServerA Serper MCP Server
Howtocook Mcp基于Anduin2017 / HowToCook (程序员在家做饭指南)的mcp server,帮你推荐菜谱、规划膳食,解决“今天吃什么“的世纪难题; Based on Anduin2017/HowToCook (Programmer's Guide to Cooking at Home), MCP Server helps you recommend recipes, plan meals, and solve the century old problem of "what to eat today"
MCP AdvisorMCP Advisor & Installation - Use the right MCP server for your needs
AiimagemultistyleA Model Context Protocol (MCP) server for image generation and manipulation using fal.ai's Stable Diffusion model.
Context7Context7 MCP Server -- Up-to-date code documentation for LLMs and AI code editors
Baidu Map百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Jina AI MCP ToolsA Model Context Protocol (MCP) server that integrates with Jina AI Search Foundation APIs.
Tavily Mcp
Playwright McpPlaywright MCP server
DeepChatYour AI Partner on Desktop
CursorThe AI Code Editor
Visual Studio Code - Open Source ("Code - OSS")Visual Studio Code
Zhipu Web SearchZhipu Web Search MCP Server is a search engine specifically designed for large models. It integrates four search engines, allowing users to flexibly compare and switch between them. Building upon the web crawling and ranking capabilities of traditional search engines, it enhances intent recognition capabilities, returning results more suitable for large model processing (such as webpage titles, URLs, summaries, site names, site icons, etc.). This helps AI applications achieve "dynamic knowledge acquisition" and "precise scenario adaptation" capabilities.
MiniMax MCPOfficial MiniMax Model Context Protocol (MCP) server that enables interaction with powerful Text to Speech, image generation and video generation APIs.
Amap Maps高德地图官方 MCP Server
ChatWiseThe second fastest AI chatbot™