- Regennexus Uap
Regennexus Uap
## Features
- **Device Control**: GPIO, PWM, sensors, cameras
- **Robotic Arms**: Amber B1, Lucid One with gripper support
- **Mesh Networking**: Auto-discovery across LAN
- **Security**: AES-256 encryption, token auth
## Installation
pip install regennexus
Content
RegenNexus UAP
Universal Adapter Protocol - Connect devices, robots, apps, and AI agents with minimal latency and maximum security. MCP-compatible for seamless AI integration.

Installation
pip install regennexus
Or with all features:
pip install regennexus[full]
Quick Start
import asyncio
from regennexus import RegenNexusProtocol
async def main():
protocol = RegenNexusProtocol()
await protocol.initialize()
# Register entities
await protocol.registry.register_entity(
entity_id="sensor_01",
entity_type="device",
capabilities=["temperature", "humidity"]
)
# Send messages
await protocol.send_message(
sender="controller",
recipient="sensor_01",
intent="read",
payload={"sensors": ["temperature"]}
)
await protocol.shutdown()
asyncio.run(main())
Features
Device Support
- Raspberry Pi - GPIO, PWM, camera, sensors
- Arduino - Digital/analog I/O, serial commands
- NVIDIA Jetson - GPU, CUDA, camera, inference
- IoT Devices - MQTT, HTTP, CoAP protocols
Robotic Arms
- Amber B1 - 7-DOF control, gripper, trajectory
- Lucid One - Cartesian control, force sensing, teach mode
from regennexus.plugins import get_amber_b1_plugin
AmberB1 = get_amber_b1_plugin()
arm = AmberB1(entity_id="arm_001", mock_mode=True)
await arm.initialize()
# Move joints
await arm.move_to([0, 45, -30, 0, 90, 0, 0], duration=2.0)
# Gripper control
await arm.open_gripper()
await arm.close_gripper(force=15.0)
Transport Layers
| Transport | Latency | Use Case |
|---|---|---|
| IPC | < 0.1ms | Local processes |
| UDP Multicast | 1-5ms | LAN discovery |
| WebSocket | 10-50ms | Remote/internet |
| Message Queue | Variable | Reliable delivery |
Security
- Encryption: AES-128/256-GCM
- Key Exchange: ECDH-384
- Authentication: Tokens, API keys
- Rate Limiting: Adaptive throttling
AI Integration (MCP)
Control hardware directly from Claude Desktop or any MCP-compatible AI:
# Start MCP server for Claude Desktop
python -m regennexus.mcp_server
Configure in claude_desktop_config.json:
{
"mcpServers": {
"regennexus": {
"command": "python",
"args": ["-m", "regennexus.mcp_server"]
}
}
}
Now ask Claude:
- "Move the robot arm to pick position"
- "Turn on GPIO pin 17"
- "What's the temperature sensor reading?"
LLM Bridge (Ollama, LM Studio)
Connect local LLMs to hardware:
from regennexus.bridges import LLMBridge, LLMConfig
llm = LLMBridge(LLMConfig(provider="ollama", model="llama3"))
response = await llm.chat("Turn on the lights")
Mesh Networking
Auto-discovery across devices on the network:
from regennexus.core import MeshNetwork, MeshConfig
mesh = MeshNetwork(MeshConfig(
node_id="controller",
capabilities=["command"]
))
await mesh.start()
# Devices auto-discovered
for peer in mesh.get_peers():
print(f"Found: {peer.node_id} ({peer.capabilities})")
Interactive Demos
Try RegenNexus in Google Colab:
- Basic Demo - Core communication
- Security Demo - Encryption & auth
CLI Usage
# Start server
regen server --host 0.0.0.0 --port 8080
# Run example
regen run examples/robotic_arms/arm_demo.py
# Version info
regen version
Optional Dependencies
pip install regennexus[api] # FastAPI server
pip install regennexus[mqtt] # MQTT support
pip install regennexus[robotics] # Robotic arms
pip install regennexus[arduino] # Arduino support
pip install regennexus[dev] # Development tools
Documentation
- Getting Started
- MCP Integration
- Device Integration
- Robotic Arms Guide
- Security Guide
- API Reference
- ROS Integration
Examples
examples/
├── simple_connection/ # Basic protocol usage
├── mcp_integration/ # Claude Desktop & LLM demos
├── mesh_network/ # Device auto-discovery
├── llm_integration/ # Ollama/LM Studio demos
├── robotic_arms/ # Amber B1 & Lucid One demos
├── ros_integration/ # ROS 2 bridge examples
├── security/ # Encryption & auth
└── binder/ # Jupyter notebooks
Docker
docker-compose up
See Docker Deployment for details.
Contributing
We welcome contributions! See CONTRIBUTING.md for guidelines.
License
MIT License - see LICENSE for details.
RegenNexus UAP - Connect Everything, Securely.
Copyright (c) 2024-2025 ReGen Designs LLC
Server Config
{
"mcpServers": {
"regennexus": {
"command": "python",
"args": [
"-m",
"regennexus.mcp_server"
],
"env": {}
}
}
}Recommend Servers
TraeBuild with Free GPT-4.1 & Claude 3.7. Fully MCP-Ready.
Playwright McpPlaywright MCP server
Serper MCP ServerA Serper MCP Server
Context7Context7 MCP Server -- Up-to-date code documentation for LLMs and AI code editors
Howtocook Mcp基于Anduin2017 / HowToCook (程序员在家做饭指南)的mcp server,帮你推荐菜谱、规划膳食,解决“今天吃什么“的世纪难题;
Based on Anduin2017/HowToCook (Programmer's Guide to Cooking at Home), MCP Server helps you recommend recipes, plan meals, and solve the century old problem of "what to eat today"
WindsurfThe new purpose-built IDE to harness magic
MCP AdvisorMCP Advisor & Installation - Use the right MCP server for your needs
Zhipu Web SearchZhipu Web Search MCP Server is a search engine specifically designed for large models. It integrates four search engines, allowing users to flexibly compare and switch between them. Building upon the web crawling and ranking capabilities of traditional search engines, it enhances intent recognition capabilities, returning results more suitable for large model processing (such as webpage titles, URLs, summaries, site names, site icons, etc.). This helps AI applications achieve "dynamic knowledge acquisition" and "precise scenario adaptation" capabilities.
DeepChatYour AI Partner on Desktop
ChatWiseThe second fastest AI chatbot™
CursorThe AI Code Editor
AiimagemultistyleA Model Context Protocol (MCP) server for image generation and manipulation using fal.ai's Stable Diffusion model.
Visual Studio Code - Open Source ("Code - OSS")Visual Studio Code
MiniMax MCPOfficial MiniMax Model Context Protocol (MCP) server that enables interaction with powerful Text to Speech, image generation and video generation APIs.
Tavily Mcp
TimeA Model Context Protocol server that provides time and timezone conversion capabilities. This server enables LLMs to get current time information and perform timezone conversions using IANA timezone names, with automatic system timezone detection.
Jina AI MCP ToolsA Model Context Protocol (MCP) server that integrates with Jina AI Search Foundation APIs.
BlenderBlenderMCP connects Blender to Claude AI through the Model Context Protocol (MCP), allowing Claude to directly interact with and control Blender. This integration enables prompt assisted 3D modeling, scene creation, and manipulation.
EdgeOne Pages MCPAn MCP service designed for deploying HTML content to EdgeOne Pages and obtaining an accessible public URL.
Baidu Map百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Amap Maps高德地图官方 MCP Server