Sponsored by Deepsite.site

Regennexus Uap

Created By
ReGenNow13 days ago
## Features - **Device Control**: GPIO, PWM, sensors, cameras - **Robotic Arms**: Amber B1, Lucid One with gripper support - **Mesh Networking**: Auto-discovery across LAN - **Security**: AES-256 encryption, token auth ## Installation pip install regennexus
Content

RegenNexus UAP

Universal Adapter Protocol - Connect devices, robots, apps, and AI agents with minimal latency and maximum security. MCP-compatible for seamless AI integration.

ReGenNexus Logo

Installation

pip install regennexus

Or with all features:

pip install regennexus[full]

Quick Start

import asyncio
from regennexus import RegenNexusProtocol

async def main():
    protocol = RegenNexusProtocol()
    await protocol.initialize()

    # Register entities
    await protocol.registry.register_entity(
        entity_id="sensor_01",
        entity_type="device",
        capabilities=["temperature", "humidity"]
    )

    # Send messages
    await protocol.send_message(
        sender="controller",
        recipient="sensor_01",
        intent="read",
        payload={"sensors": ["temperature"]}
    )

    await protocol.shutdown()

asyncio.run(main())

Features

Device Support

  • Raspberry Pi - GPIO, PWM, camera, sensors
  • Arduino - Digital/analog I/O, serial commands
  • NVIDIA Jetson - GPU, CUDA, camera, inference
  • IoT Devices - MQTT, HTTP, CoAP protocols

Robotic Arms

  • Amber B1 - 7-DOF control, gripper, trajectory
  • Lucid One - Cartesian control, force sensing, teach mode
from regennexus.plugins import get_amber_b1_plugin

AmberB1 = get_amber_b1_plugin()
arm = AmberB1(entity_id="arm_001", mock_mode=True)
await arm.initialize()

# Move joints
await arm.move_to([0, 45, -30, 0, 90, 0, 0], duration=2.0)

# Gripper control
await arm.open_gripper()
await arm.close_gripper(force=15.0)

Transport Layers

TransportLatencyUse Case
IPC< 0.1msLocal processes
UDP Multicast1-5msLAN discovery
WebSocket10-50msRemote/internet
Message QueueVariableReliable delivery

Security

  • Encryption: AES-128/256-GCM
  • Key Exchange: ECDH-384
  • Authentication: Tokens, API keys
  • Rate Limiting: Adaptive throttling

AI Integration (MCP)

Control hardware directly from Claude Desktop or any MCP-compatible AI:

# Start MCP server for Claude Desktop
python -m regennexus.mcp_server

Configure in claude_desktop_config.json:

{
    "mcpServers": {
        "regennexus": {
            "command": "python",
            "args": ["-m", "regennexus.mcp_server"]
        }
    }
}

Now ask Claude:

  • "Move the robot arm to pick position"
  • "Turn on GPIO pin 17"
  • "What's the temperature sensor reading?"

LLM Bridge (Ollama, LM Studio)

Connect local LLMs to hardware:

from regennexus.bridges import LLMBridge, LLMConfig

llm = LLMBridge(LLMConfig(provider="ollama", model="llama3"))
response = await llm.chat("Turn on the lights")

Mesh Networking

Auto-discovery across devices on the network:

from regennexus.core import MeshNetwork, MeshConfig

mesh = MeshNetwork(MeshConfig(
    node_id="controller",
    capabilities=["command"]
))
await mesh.start()

# Devices auto-discovered
for peer in mesh.get_peers():
    print(f"Found: {peer.node_id} ({peer.capabilities})")

Interactive Demos

Try RegenNexus in Google Colab:

CLI Usage

# Start server
regen server --host 0.0.0.0 --port 8080

# Run example
regen run examples/robotic_arms/arm_demo.py

# Version info
regen version

Optional Dependencies

pip install regennexus[api]        # FastAPI server
pip install regennexus[mqtt]       # MQTT support
pip install regennexus[robotics]   # Robotic arms
pip install regennexus[arduino]    # Arduino support
pip install regennexus[dev]        # Development tools

Documentation

Examples

examples/
├── simple_connection/    # Basic protocol usage
├── mcp_integration/      # Claude Desktop & LLM demos
├── mesh_network/         # Device auto-discovery
├── llm_integration/      # Ollama/LM Studio demos
├── robotic_arms/         # Amber B1 & Lucid One demos
├── ros_integration/      # ROS 2 bridge examples
├── security/             # Encryption & auth
└── binder/               # Jupyter notebooks

Docker

docker-compose up

See Docker Deployment for details.

Contributing

We welcome contributions! See CONTRIBUTING.md for guidelines.

License

MIT License - see LICENSE for details.


RegenNexus UAP - Connect Everything, Securely.

Copyright (c) 2024-2025 ReGen Designs LLC

Server Config

{
  "mcpServers": {
    "regennexus": {
      "command": "python",
      "args": [
        "-m",
        "regennexus.mcp_server"
      ],
      "env": {}
    }
  }
}
Recommend Servers
TraeBuild with Free GPT-4.1 & Claude 3.7. Fully MCP-Ready.
Playwright McpPlaywright MCP server
Serper MCP ServerA Serper MCP Server
Context7Context7 MCP Server -- Up-to-date code documentation for LLMs and AI code editors
Howtocook Mcp基于Anduin2017 / HowToCook (程序员在家做饭指南)的mcp server,帮你推荐菜谱、规划膳食,解决“今天吃什么“的世纪难题; Based on Anduin2017/HowToCook (Programmer's Guide to Cooking at Home), MCP Server helps you recommend recipes, plan meals, and solve the century old problem of "what to eat today"
WindsurfThe new purpose-built IDE to harness magic
MCP AdvisorMCP Advisor & Installation - Use the right MCP server for your needs
Zhipu Web SearchZhipu Web Search MCP Server is a search engine specifically designed for large models. It integrates four search engines, allowing users to flexibly compare and switch between them. Building upon the web crawling and ranking capabilities of traditional search engines, it enhances intent recognition capabilities, returning results more suitable for large model processing (such as webpage titles, URLs, summaries, site names, site icons, etc.). This helps AI applications achieve "dynamic knowledge acquisition" and "precise scenario adaptation" capabilities.
DeepChatYour AI Partner on Desktop
ChatWiseThe second fastest AI chatbot™
CursorThe AI Code Editor
AiimagemultistyleA Model Context Protocol (MCP) server for image generation and manipulation using fal.ai's Stable Diffusion model.
Visual Studio Code - Open Source ("Code - OSS")Visual Studio Code
MiniMax MCPOfficial MiniMax Model Context Protocol (MCP) server that enables interaction with powerful Text to Speech, image generation and video generation APIs.
Tavily Mcp
TimeA Model Context Protocol server that provides time and timezone conversion capabilities. This server enables LLMs to get current time information and perform timezone conversions using IANA timezone names, with automatic system timezone detection.
Jina AI MCP ToolsA Model Context Protocol (MCP) server that integrates with Jina AI Search Foundation APIs.
BlenderBlenderMCP connects Blender to Claude AI through the Model Context Protocol (MCP), allowing Claude to directly interact with and control Blender. This integration enables prompt assisted 3D modeling, scene creation, and manipulation.
EdgeOne Pages MCPAn MCP service designed for deploying HTML content to EdgeOne Pages and obtaining an accessible public URL.
Baidu Map百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Amap Maps高德地图官方 MCP Server